Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organelle positioning and cell polarity

Key Points

  • Cell polarity can be defined as a structurally and functionally asymmetric organization, in which the non-random positioning of each organelle, the function of which contributes to cell asymmetry, is preserved and transmitted through cell division.

  • Each cytoskeletal or membrane organelle has its own physico-chemical properties and an overall orientated dynamics that must be coupled to that of other organelles in order to contribute efficiently to cell polarity.

  • Organelle polarity can be propagated to the whole cell. Microtubules and the ancestral asymmetric centriole or basal body/axoneme organelle are particularly well designed to organize and transmit cell polarity.

  • Two important groups of eukaryotic cells, cilium- or flagellum-dependent swimming cells and actin-dependent migrating cells, reveal common design principles, particularly concerning the cell-wide extension of the microtubule network from a nucleus-associated organizing centre.

  • The conservative mode of duplication of the centriole or basal body seems to be a core mechanism for the transmission of polarities through cell division in both types of cell architecture.

  • Juxtaposition of cortical contraction and cell adhesion is a core mechanism of cell-orientating processes in animal cells. Organelle positioning that is observed in tissues in response to external signalling cues can be studied in individual cells using experimental approaches, whereby the pattern of adhesion is precisely controlled.

Abstract

In spite of conspicuous differences in their polarized architecture, swimming unicellular eukaryotes and migrating cells from metazoa display a conserved hierarchical interlocking of the main cellular compartments, in which the microtubule network has a dominant role. A microtubule array can organize the distribution of endomembranes owing to a cell-wide and polarized extension around a unique nucleus-associated structure. The nucleus-associated structure in animal cells contains a highly conserved organelle, the centriole or basal body. This organelle has a defined polarity that can be transmitted to the cell. Its conservative mode of duplication seems to be a core mechanism for the transmission of polarities through cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic polarizing properties of the actin and tubulin cytoskeleton.
Figure 2: The centriole or basal body organelle.
Figure 3: The two main polar cell architectures in eukaryotes.
Figure 4: The transmission of cell polarities.
Figure 5: Adhesive control of organelle positioning and cell polarity.

Similar content being viewed by others

References

  1. Lee, M. & Vasioukhin, V. Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci. 121, 1141–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wodarz, A. & Nathke, I. Cell polarity in development and cancer. Nature Cell Biol. 9, 1016–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Thanbichler, M. & Shapiro, L. Getting organized—how bacterial cells move proteins and DNA. Nature Rev. Microbiol. 6, 28–40 (2008).

    Article  CAS  Google Scholar 

  4. Erickson, H. P. Evolution of the cytoskeleton. Bioessays 29, 668–677 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Solon, J., Streicher, P., Richter, R., Brochard-Wyart, F. & Bassereau, P. Vesicles surfing on a lipid bilayer: self-induced haptotactic motion. Proc. Natl Acad. Sci. USA 103, 12382–12387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999). The first in vitro reconstitution of actin-based movement using a minimal set of purified components.

    Article  CAS  PubMed  Google Scholar 

  12. van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. van der Gucht, J., Paluch, E., Plastino, J. & Sykes, C. Stress release drives symmetry breaking for actin-based movement. Proc. Natl Acad. Sci. USA 102, 7847–7852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michelot, A. et al. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol. 17, 825–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Janson, M. E. et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357–368 (2007). A comprehensive study, including in vivo and minimal in vitro systems and simulations, that shows how a bipolar microtubule bundle can form.

    Article  CAS  PubMed  Google Scholar 

  16. Karsenti, E., Nedelec, F. & Surrey, T. Modelling microtubule patterns. Nature Cell Biol. 8, 1204–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997). The first in vitro study showing how motors and microtubules can form large-scale organized structures.

    Article  CAS  PubMed  Google Scholar 

  18. Holy, T. E., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6231 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodionov, V. I. & Borisy, G. G. Self-centring activity of cytoplasm. Nature 386, 170–173 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309, 1373–1376 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Niethammer, P., Bastiaens, P. & Karsenti, E. Stathmin–tubulin interaction gradients in motile and mitotic cells. Science 303, 1862–1866 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. O'Connell, C. B. & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717–1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci. 114, 247–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hu, C. K., Coughlin, M., Field, C. M. & Mitchison, T. J. Cell polarization during monopolar cytokinesis. J. Cell Biol. 181, 195–202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baroin, A. et al. Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc. Natl Acad. Sci. USA 85, 3474–3478 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bornens, M. & Azimzadeh, J. Origin and evolution of the centrosome. Adv. Exp. Med. Biol. 607, 119–129 (2007).

    Article  PubMed  Google Scholar 

  27. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007). An elegant study that proposes an original view on the requirement for cilium disassembly before entry into the cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beisson, J. & Jerka-Dziadosz, M. Polarities of the centriolar structure: morphogenetic consequences. Biol. Cell 91, 367–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S. & Klausner, R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nature Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  CAS  Google Scholar 

  31. Munro, S. Organelle identity and the organization of membrane traffic. Nature Cell Biol. 6, 469–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  Google Scholar 

  33. Patterson, G. H. et al. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133, 1055–1067 (2008). Proposes a simple physical model for transport through the Golgi apparatus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gull, K. Protist tubulins: new arrivals, evolutionary relationships and insights to cytoskeletal function. Curr. Opin. Microbiol. 4, 427–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Robinson, D. R., Sherwin, T., Ploubidou, A., Byard, E. H. & Gull, K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 128, 1163–1172 (1995). Defines the replication and polarity of cytoskeleton elements in T. brucei.

    Article  CAS  PubMed  Google Scholar 

  36. Leander, B. S., Esson, H. J. & Breglia, S. A. Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29, 987–1000 (2007).

    Article  PubMed  Google Scholar 

  37. Cavalier-Smith, T. Only six kingdoms of life. Proc. Biol. Sci. 271, 1251–1262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Clainche, C. & Carlier, M. F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 88, 489–513 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Marco, E., Wedlich-Soldner, R., Li, R., Altschuler, S. J. & Wu, L. F. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell 129, 411–422 (2007). Proposes a model based on fluorescence recovery after photobleaching (FRAP) analysis to account for the formation of a stable Cdc42 polar cap in budding yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ozbudak, E. M., Becskei, A. & van Oudenaarden, A. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell 9, 565–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Cowan, C. R. & Hyman, A. A. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431, 92–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol. 20, 427–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Paluch, E., Piel, M., Prost, J., Bornens, M. & Sykes, C. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89, 724–733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Charras, G. T., Coughlin, M., Mitchison, T. J. & Mahadevan, L. Life and times of a cellular bleb. Biophys. J. 94, 1836–1853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bornens, M., Paintrand, M. & Celati, C. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity. J. Cell Biol. 109, 1071–1083 (1989). The first paper to describe large-scale sustained cortical oscillations in interphase cells.

    Article  CAS  PubMed  Google Scholar 

  48. Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Euteneuer, U. & Schliwa, M. Mechanism of centrosome positioning during the wound response in BSC-1 cells. J. Cell Biol. 116, 1157–1166 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999). An inspiring paper that shows symmetry breaking of the actomyosin system in a cell fragment, which induces polarization and motility.

    Article  CAS  PubMed  Google Scholar 

  51. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  52. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sloboda, R. D. & Rosenbaum, J. L. Making sense of cilia and flagella. J. Cell Biol. 179, 575–582 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shay, J. W., Porter, K. R. & Prescott, D. M. The surface morphology and fine structure of CHO (Chinese hamster ovary) cells following enucleation. Proc. Natl Acad. Sci. USA 71, 3059–3063 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000). Elegant and definitive demonstration that a functional mitotic spindle can assemble without centrosomes in somatic mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  57. Mogensen, M. M., Tucker, J. B., Mackie, J. B., Prescott, A. R. & Nathke, I. S. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. J. Cell Biol. 157, 1041–1048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abal, M. et al. Microtubule release from the centrosome in migrating cells. J. Cell Biol. 159, 731–737 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stevenson, V. A., Kramer, J., Kuhn, J. & Theurkauf, W. E. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization. Nature Cell Biol. 3, 68–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006). Shows that secretory granule delivery is focused through an intimate association of the centrosome with the plasma membrane

    Article  CAS  PubMed  Google Scholar 

  61. Dawe, H. R., Farr, H. & Gull, K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci. 120, 7–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Stephan, A., Vaughan, S., Shaw, M. K., Gull, K. & McKean, P. G. An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 8, 1323–1330 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Brugerolle, G. & Mignot, J. P. The rhizoplast of chrysomonads, a basal body–nucleus connector that polarises the dividing spindle. Protoplasma 222, 13–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Salisbury, J. L., Baron, A., Surek, B. & Melkonian, M. Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J. Cell Biol. 99, 962–970 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Azimzadeh, J. & Bornens, M. in Centrosomes in Development and Disease (ed. Nigg, E. A.) 93–122 (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  66. Salisbury, J. L., Sanders, M. A. & Harpst, L. Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J. Cell Biol. 105, 1799–1805 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Bornens, M. Is the centriole bound to the nuclear membrane? Nature 270, 80–82 (1977).

    Article  CAS  PubMed  Google Scholar 

  68. Havercroft, J. C., Quinlan, R. A. & Gull, K. Characterisation of a microtubule organising centre from Physarum polycephalum myxamoebae. J. Ultrastruct. Res. 74, 313–321 (1981).

    Article  CAS  PubMed  Google Scholar 

  69. Kuriyama, R., Sato, C., Fukui, Y. & Nishibayashi, S. In vitro nucleation of microtubules from microtubule-organizing center prepared from cellular slime mold. Cell. Motil. 2, 257–272 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Rout, M. P. & Kilmartin, J. V. Components of the yeast spindle and spindle pole body. J. Cell Biol. 111, 1913–1927 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Malone, C. J. et al. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115, 825–836 (2003). Shows that mutations in a member of the Hook family of cytoskeletal linker proteins perturb the attachment of the centrosome to the nucleus, which gives rise to aberrant spindles and lethality.

    Article  CAS  PubMed  Google Scholar 

  72. Wakefield, J. G., Huang, J. Y. & Raff, J. W. Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Curr. Biol. 10, 1367–1370 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Morris, N. R. Nuclear migration. From fungi to the mammalian brain. J. Cell Biol. 148, 1097–1101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reinsch, S. & Gonczy, P. Mechanisms of nuclear positioning. J. Cell Sci. 111, 2283–2295 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Holzbaur, E. L. & Vallee, R. B. DYNEINS: molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Holleran, E. A., Karki, S. & Holzbaur, E. L. The role of the dynactin complex in intracellular motility. Int. Rev. Cytol. 182, 69–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Dujardin, D. L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palazzo, A. F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Gonczy, P. Centrosomes: hooked on the nucleus. Curr. Biol. 14, R268–R270 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Higginbotham, H. R. & Gleeson, J. G. The centrosome in neuronal development. Trends Neurosci. 30, 276–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsai, J. W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci. 10, 970–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Bellion, A., Baudoin, J. P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Solecki, D. J., Model, L., Gaetz, J., Kapoor, T. M. & Hatten, M. E. Par6α signaling controls glial-guided neuronal migration. Nature Neurosci. 7, 1195–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Umeshima, H., Hirano, T. & Kengaku, M. Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc. Natl Acad. Sci. USA 104, 16182–16187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Tsujikawa, M., Omori, Y., Biyanwila, J. & Malicki, J. Mechanism of positioning the cell nucleus in vertebrate photoreceptors. Proc. Natl Acad. Sci. USA 104, 14819–14824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jackman, M., Lindon, C., Nigg, E. A. & Pines, J. Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biol. 5, 143–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Kramer, A. et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B–Cdk1 kinase. Nature Cell Biol. 6, 884–891 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. Portier, N. et al. A microtubule-independent role for centrosomes and Aurora A in nuclear envelope breakdown. Dev. Cell 12, 515–529 (2007). Provides evidence that mitotic centrosomes could generate a diffusible factor, possibly activated by Aurora A, that promotes nuclear envelope breakdown.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hachet, V., Canard, C. & Gonczy, P. Centrosomes promote timely mitotic entry in C. elegans embryos. Dev. Cell 12, 531–541 (2007). Shows that centrosome integrity and attachment to the nucleus is necessary for timing mitotic entry by locally concentrating the Aurora A kinase AIR-1.

    Article  CAS  PubMed  Google Scholar 

  95. Szabo, B. et al. Auto-reverse nuclear migration in bipolar mammalian cells on micropatterned surfaces. Cell. Motil. Cytoskeleton 59, 38–49 (2004). Highlights the role of microtubule dynamics for nucleus positioning during orientated migration.

    Article  CAS  PubMed  Google Scholar 

  96. Malone, C. J., Fixsen, W. D., Horvitz, H. R. & Han, M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126, 3171–3181 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Tzur, Y. B., Wilson, K. L. & Gruenbaum, Y. SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton. Nature Rev. Mol. Cell Biol. 7, 782–788 (2006).

    Article  CAS  Google Scholar 

  98. Hagan, I. & Yanagida, M. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129, 1033–1047 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Jaspersen, S. L. et al. The Sad1–UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J. Cell Biol. 174, 665–675 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. King, M. C., Drivas, T. G. & Blobel, G. A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134, 427–438 (2008). Provides evidence that cytoplasmic microtubules are mechanically coupled to the nuclear heterochromatin, through proteins that are embedded in the nuclear envelope and are present at the SPB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J. & Hutchison, C. J. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J. Cell Biol. 178, 897–904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He, C. Y., Pypaert, M. & Warren, G. Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310, 1196–1198 (2005). Evidence for the involvement of centrin in the duplication of the Golgi apparatus.

    Article  CAS  PubMed  Google Scholar 

  103. Saraste, J. & Goud, B. Functional symmetry of endomembranes. Mol. Biol. Cell 18, 1430–1436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Egea, G. & Rios, R. The Golgi Apparatus (eds Mironov, A. & Luini, A.) (Springer-Verlag, Wien, 2008).

    Google Scholar 

  105. Tassin, A. M., Paintrand, M., Berger, E. G. & Bornens, M. The Golgi apparatus remains associated with microtubule organizing centers during myogenesis. J. Cell Biol. 101, 630–638 (1985).

    Article  CAS  PubMed  Google Scholar 

  106. Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J. & Koll, F. Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr. Biol. 15, 2097–2106 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Nohynkova, E., Tumova, P. & Kulda, J. Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot. Cell 5, 753–761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishi, M., Hu, K., Murray, J. M. & Roos, D. S. Organellar dynamics during the cell cycle of Toxoplasma gondii. J. Cell Sci. 121, 1559–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Holmes, J. A. & Dutcher, S. K. Cellular asymmetry in Chlamydomonas reinhardtii. J. Cell Sci. 94, 273–285 (1989).

    Article  PubMed  Google Scholar 

  110. Sherwin, T. & Gull, K. Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell 57, 211–221 (1989). Shows that the reproduction of the cortical microtubule cytoskeleton relies on intercalation of new microtubules in the old array.

    Article  CAS  PubMed  Google Scholar 

  111. He, C. Y. et al. Golgi duplication in Trypanosoma brucei. J. Cell Biol. 165, 313–321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ho, H. H., He, C. Y., de Graffenried, C. L., Murrells, L. J. & Warren, G. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 103, 7676–7681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Absalon, S. et al. Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS ONE 2, e437 (2007). Defines the mode of positioning of the basal body.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kohl, L., Robinson, D. & Bastin, P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J. 22, 5336–5346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pereira, G., Tanaka, T. U., Nasmyth, K. & Schiebel, E. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J. 20, 6359–6370 (2001). Shows that the 'old' SPB always migrates into the bud in unperturbed cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Grallert, A., Krapp, A., Bagley, S., Simanis, V. & Hagan, I. M. Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. Genes Dev. 18, 1007–1021 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bardin, A. J. & Amon, A. MEN and SIN: what's the difference? Nature Rev. Mol. Cell Biol. 2, 815–826 (2001).

    Article  CAS  Google Scholar 

  118. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Maekawa, H., Usui, T., Knop, M. & Schiebel, E. Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J. 22, 438–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, S. et al. Structural role of Sfi1p–centrin filaments in budding yeast spindle pole body duplication. J. Cell Biol. 173, 867–877 (2006). Provides strong evidence for a model of SPB duplication, whereby the half-bridge doubles in length by associating with the C terminus of Sfi1, thereby providing a new N terminus of Sfi1 to initiate SPB assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thery, M. & Bornens, M. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Yamashita, Y. M., Mahowald, A. P., Perlin, J. R. & Fuller, M. T. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315, 518–521 (2007). During stem cell divisions in the male germ line, the mother centrosome remains anchored near the niche while the daughter centrosome migrates to the opposite side of the cell before spindle assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gonzalez, C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nature Rev. Genet. 8, 462–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Rebollo, E. et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev. Cell 12, 467–474 (2007). This study highlights a correlation between centrosome activity and division asymmetry.

    Article  CAS  PubMed  Google Scholar 

  125. Lew, D. J., Burke, D. J. & Dutta, A. The immortal strand hypothesis: how could it work? Cell 133, 21–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Shinin, V., Gayraud-Morel, B., Gomes, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biol. 8, 677–687 (2006). Shows that asymmetric division of muscle stem cells is coupled to asymmetric segregation of DNA strands.

    Article  CAS  PubMed  Google Scholar 

  127. Fuentealba, L. C., Eivers, E., Geissert, D., Taelman, V. & De Robertis, E. M. Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc. Natl Acad. Sci. USA 105, 7732–7737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jones, C. et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genet. 40, 69–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet. 40, 871–879 (2008). Supports a direct connection between the orientation of the basal body and planar polarity.

    Article  CAS  PubMed  Google Scholar 

  130. Park, T. J., Haigo, S. L. & Wallingford, J. B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nature Genet. 38, 303–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Watnick, T. & Germino, G. From cilia to cyst. Nature Genet. 34, 355–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Boisvieux-Ulrich, E. & Sandoz, D. Determination of ciliary polarity precedes differentiation in the epithelial cells of quail oviduct. Biol. Cell 72, 3–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  133. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  Google Scholar 

  134. Pugacheva, E. N. & Golemis, E. A. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nature Cell Biol. 7, 937–946 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Bahmanyar, S. et al. β-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 22, 91–105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, W. F. & Chen, C. S. Cellular and multicellular form and function. Adv. Drug Deliv. Rev. 59, 1319–1328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nie, Z. & Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater. 7, 277–290 (2008).

    Article  CAS  Google Scholar 

  138. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Théry, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006). Shows that the orientation of cell polarity is governed by the spatial distribution of cell adhesions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Wang, N., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Micropatterning tractional forces in living cells. Cell. Motil. Cytoskeleton 52, 97–106 (2002).

    Article  PubMed  Google Scholar 

  141. Parker, K. et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16, 1195–1204 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Brock, A. et al. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19, 1611–1617 (2002).

    Article  CAS  Google Scholar 

  143. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Huang, S., Chen, C. S. & Ingber, D. E. Control of cyclin D1, p27Kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9, 3179–3193 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. James, J., Goluch, E. D., Hu, H., Liu, C. & Mrksich, M. Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell. Motil. Cytoskeleton 1 Aug 2008 (doi:10.1002/cm.20305).

    Article  PubMed  Google Scholar 

  147. Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Thery, M., Pepin, A., Dressaire, E., Chen, Y. & Bornens, M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell. Motil. Cytoskeleton 63, 341–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Csucs, G., Quirin, K. & Danuser, G. Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns. Cell. Motil. Cytoskeleton 64, 856–867 (2007).

    Article  PubMed  Google Scholar 

  150. Jiang, X., Bruzewicz, D. A., Wong, A. P., Piel, M. & Whitesides, G. M. Directing cell migration with asymmetric micropatterns. Proc. Natl Acad. Sci. USA 102, 975–978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pouthas, F. et al. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. J. Cell Sci. 121, 2406–2414 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Huang, S., Brangwynne, C. P., Parker, K. K. & Ingber, D. E. Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence. Cell. Motil. Cytoskeleton 61, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Gogendeau, D. et al. Functional diversification of centrins and cell morphological complexity. J. Cell Sci. 121, 65–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Geimer, S. & Melkonian, M. Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot. Cell 4, 1253–1263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bastiaens, P., Caudron, M., Niethammer, P. & Karsenti, E. Gradients in the self-organization of the mitotic spindle. Trends Cell Biol. 16, 125–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Fuller, B. G. et al. Midzone activation of Aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Neumann, F. R. & Nurse, P. Nuclear size control in fission yeast. J. Cell Biol. 179, 593–600 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Beisson, J. & Sonneborn, T. M. Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc. Natl Acad. Sci. USA 53, 275–282 (1965). The first demonstration of an epigenetic process by which structural memory can be observed during cell reproduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meyer, E. & Beisson, J. Epigenetics: paramecium as a model system. Med. Sci. (Paris) 21, 377–383 (2005) (in French).

    Article  Google Scholar 

  160. Beisson, J. Preformed cell structure and cell heredity. Prion 2, 1–8 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Beisson, J. et al. Basal body-associated nucleation center for the centrin-based cortical cytoskeletal network in Paramecium. Protist 152, 339–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, T. et al. Multigenerational cortical inheritance of the Rax2 protein in orienting polarity and division in yeast. Science 290, 1975–1978 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Thery, M., Jimenez-Dalmaroni, A., Racine, V., Bornens, M. & Julicher, F. Experimental and theoretical study of mitotic spindle orientation. Nature 447, 493–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Grill, S., Howard, J., Schäffer, E., Stelzer, E., Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  167. Klotz, C., Bordes, N., Laine, M. C., Sandoz, D. & Bornens, M. A protein of 175,000 daltons associated with striated rootlets in ciliated epithelia, as revealed by a monoclonal antibody. Cell. Motil. Cytoskeleton 6, 56–67 (1986).

    Article  CAS  PubMed  Google Scholar 

  168. Lemullois, M., Gounon, P. & Sandoz, D. Relationships between cytokeratin filaments and centriolar derivatives during ciliogenesis in the quail oviduct. Biol. Cell 61, 39–49 (1987).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, J. et al. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol. 159, 431–440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Lechler, T. & Fuchs, E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147–154 (2007). Shows how adhesion remodelling during cell differentiation induces centrosomal protein translocation to cell–cell contacts and microtubule reorganization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Thery, M. & Bornens, M. Cell adhesion guides cell polarity. Med. Sci. (Paris) 23, 230–232 (2007) (in French).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank M. Piel and M. Théry, who helped considerably in the writing of this account through thorough discussions on most of the issues covered. They have produced original research with creative approaches over the past years, which inspired the shaping of this review. They also contributed significantly and generously towards the figures of this manuscript. This manuscript also benefited from discussions with P. Bastin and J. Beisson.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

UniProtKB

ARP1

Aurora A

CDC42

dynactin

dynein

emerin

Sfi1

Glossary

Endomembrane

One of an intracellular dynamic array of membrane-bound organelles that have distinct components and functions. A constant flow of membranes and proteins occurs through these organelles.

Centrosome

A single-copy structure that is generally localized at the cell centre because of its microtubule-nucleating and -anchoring activity. The centrosome is physically associated with the nucleus and duplicates once during the cell cycle. A centrosome can be isolated, whereas a microtubule-organizing centre (MTOC) is not specifically an isolatable structure. Whereas a centrosome is necessarily an MTOC, the reverse is not true.

Centriole

A structure that is similar to the basal body organelle. A pair of centrioles is required to form the centrosome in animal cells. The oldest centriole in the pair can convert to the basal body of a primary cilium in many types of differentiated cells.

Basal body/axoneme

The basal body is a nine-fold microtubule-based cylindrical structure at the base of the axoneme, a (9 + 2) microtubule structure in the flagellum. This ancient structure is present at the apparition of the early eukaryotic cells.

Microfilament

A cytoskeletal filament with a 6-nm diameter that consists of polymerized actin. Microfilaments form the main component of the cellular contractile machinery.

Cytotaxis

An epigenetic process that confers a structural memory in cell reproduction.

Blebbing

The formation of blebs. Blebs are spherical cellular protrusions that occur in many physiological situations and depend on membrane–cortex adhesion.

Centrin

One of a set of proteins that are associated with centrosomal structures in most eukaryotes. Centrins belong to two ancient subfamilies of the calcium-binding, EF-hand superfamily of proteins that are defined by calmodulin.

Cytokinesis

The separation of a cell into two, marked by ingression of the cleavage furrow between the two nuclei.

Karyokinesis

The physical separation of the daughter nuclei at the end of mitosis.

Lamellipodium

A thin, flat extension at the cell periphery that is filled with a branching meshwork of actin filaments.

Focal adhesion

A cellular structure that links the extracellular matrix on the outside of the cell to the actin cytoskeleton inside the cell through integrin receptors.

Actomyosin

A complex of myosin and actin filaments that is responsible for a range of cellular movements in eukaryotic cells. Myosins can translocate vesicles or other cargo on actin filaments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornens, M. Organelle positioning and cell polarity. Nat Rev Mol Cell Biol 9, 874–886 (2008). https://doi.org/10.1038/nrm2524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing