Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphotyrosine-binding domains in signal transduction

Key Points

  • SH2 domains bind phosphotyrosine residues within the correct context of adjacent carboxy-terminal amino acids.

  • SH2 domains contain a 7-stranded b-meander, and bind with their peptide ligands that lie perpendicular to the central b-sheet.

  • SH2 domains couple receptor tyrosine kinases to downstream signalling pathways and participate in the regulation of cytosolic tyrosine kinases and phosphatases.

  • PTB domains, like SH2 domains, also bind to phosphotyrosine-containing sequence motifs within the correct context of the adjacent amino-terminal amino acids.

  • Some PTB domains bind to their ligands in a phospho-independent manner.

  • PTB domains consist of a 7-stranded b-sandwich with the bound peptide ligand often forming an extra anti-parallel b-strand.

  • PTB-domain-containing proteins commonly function as scaffolds and adaptor proteins downstream from membrane-bound receptors.

  • Molecular defects in SH2 and PTB domains that impair ligand binding are associated with human disease.

Abstract

Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modular architecture of some SH2-domain-containing proteins.
Figure 2: Schematic of the PDGF receptor.
Figure 3: Molecular mechanism of SH2-domain function.
Figure 4: Modular architecture of PTB-domain-containing proteins.
Figure 5: Ribbons representation of the SHC PTB domain.
Figure 6: Comparison of the structures of SH2 and PTB phosphotyrosine-binding domains.

Similar content being viewed by others

References

  1. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).A thorough and detailed review of the structural basis for peptide binding by SH2, SH3 and PTB domains.

    Article  CAS  PubMed  Google Scholar 

  2. Mayer, B. J. & Gupta, R. Functions of SH2 and SH3 domains. Curr. Top. Microbiol. Immunol. 228, 1–22 (1998).

    CAS  PubMed  Google Scholar 

  3. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).A classic summary of modular signalling domains. Much of the information has not been presented in later reviews.

    Article  CAS  PubMed  Google Scholar 

  4. Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6, 4396–4408 (1986).The first description of the SH2 domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeClue, J. E., Sadowski, I., Martin, G. S. & Pawson, T. A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. Proc. Natl Acad. Sci. USA 84, 9064–9068 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cross, F. R., Garber, E. A. & Hanafusa, H. N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene. Mol. Cell. Biol. 5, 2789–2795 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raymond, V. W. & Parsons, J. T. Identification of an amino terminal domain required for the transforming activity of the Rous sarcoma virus src protein. Virology 160, 400–410 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, D. et al. Binding of SH2 domains of phospholipase Cγ1, GAP, and Src to activated growth factor receptors. Science 250, 979–982 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Matsuda, M., Mayer, B. J., Fukui, Y. & Hanafusa, H. Binding of transforming protein, p47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248, 1537–1539 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda, M., Mayer, B. J. & Hanafusa, H. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins. Mol. Cell. Biol. 11, 1607–1613 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayer, B. J., Jackson, P. K. & Baltimore, D. The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl Acad. Sci. USA 88, 627–631 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moran, M. F. et al. Src homology region 2 domains direct protein–protein interactions in signal transduction. Proc. Natl Acad. Sci. USA 87, 8622–8626 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantley, L. C. et al. Oncogenes and signal transduction. Cell 64, 281–302 (1991).A unified view of signal transduction involving protein-tyrosine-kinase and lipid-kinase signalling that was remarkably prescient and is still timely.

    Article  CAS  PubMed  Google Scholar 

  15. Margolis, B. et al. The tyrosine phosphorylated carboxy-terminus of the EGF receptor is a binding site for GAP and PLC-γ. EMBO J. 9, 4375–4380 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Escobedo, J. A., Kaplan, D. R., Kavanaugh, W. M., Turck, C. W. & Williams, L. T. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol. Cell. Biol. 11, 1125–1132 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fantl, W. J. et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69, 413–423 (1992).This was one of the first studies that showed that distinct phosphotyrosine sites on receptor tyrosine kinases recruit different signalling molecules.

    Article  CAS  PubMed  Google Scholar 

  18. Kazlauskas, A., Kashishian, A., Cooper, J. A. & Valius, M. GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol. Cell. Biol. 12, 2534–2544 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valius, M., Bazenet, C. & Kazlauskas, A. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor β-subunit and are required for binding of phospholipase Cγ and a 64-kilodalton protein, respectively. Mol. Cell. Biol. 13, 133–143 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kazlauskas, A., Feng, G. S., Pawson, T. & Valius, M. The 64-kDa protein that associates with the platelet-derived growth factor receptor β subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc. Natl Acad. Sci. USA 90, 6939–6943 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ronnstrand, L. et al. Identification of two C-terminal autophosphorylation sites in the PDGF β-receptor: involvement in the interaction with phospholipase C-γ. EMBO J. 11, 3911–3919 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoakim, M. et al. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase. J. Virol. 66, 5485–5491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).The first description of the use of oriented peptide-library screening to deduce phosphotyrosine motifs that are recognized by different SH2 domains.

    Article  CAS  PubMed  Google Scholar 

  24. Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Waksman, G., Shoelson, S. E., Pant, N., Cowburn, D. & Kuriyan, J. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72, 779–790 (1993).A classic study of structural biology that shows how SH2 domains bind to phosphotyrosine-containing peptides.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, C. H. et al. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Structure 2, 423–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Nolte, R. T., Eck, M. J., Schlessinger, J., Shoelson, S. E. & Harrison, S. C. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nature Struct. Biol. 3, 364–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Tong, L. et al. Crystal structures of the human p56lck SH2 domain in complex with two short phosphotyrosyl peptides at 1.0 Å and 1.8 Å resolution. J. Mol. Biol. 256, 601–610 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Poy, F. et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol. Cell 4, 555–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Yaffe, M. B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nature Biotechnol. 19, 348–353 (2001).

    Article  CAS  Google Scholar 

  31. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Pawson, T. & Nash, P. Protein–protein interactions define specificity in signal transduction. Genes Dev. 14, 1027–1047 (2000).An excellent and up-to-date review of many modular domains and their roles in cell signalling and development.

    CAS  PubMed  Google Scholar 

  33. Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358, 646–653 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Eck, M. J., Shoelson, S. E. & Harrison, S. C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Bradshaw, J. M., Mitaxov, V. & Waksman, G. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J. Mol. Biol. 293, 971–985 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Bradshaw, J. M. & Waksman, G. Calorimetric examination of high-affinity Src SH2 domain-tyrosyl phosphopeptide binding: dissection of the phosphopeptide sequence specificity and coupling energetics. Biochemistry 38, 5147–5154 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kimber, M. S. et al. Structural basis for specificity switching of the Src SH2 domain. Mol. Cell 5, 1043–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Morrione, A. et al. mGrb10 interacts with Nedd4. J. Biol. Chem. 274, 24094–24099 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Li, S. C. et al. Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Curr. Biol. 9, 1355–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Marengere, L. E. et al. SH2 domain specificity and activity modified by a single residue. Nature 369, 502–505 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Valius, M. & Kazlauskas, A. Phospholipase C-γ1 and phosphatidylinositol-3-kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73, 321–334 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Montmayeur, J. P., Valius, M., Vandenheede, J. & Kazlauskas, A. The platelet-derived growth factor β receptor triggers multiple cytoplasmic signaling cascades that arrive at the nucleus as distinguishable inputs. J. Biol. Chem. 272, 32670–32678 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Tallquist, M. D. et al. Retention of PDGFR-β function in mice in the absence of phosphatidylinositol-3′-kinase and phospholipase Cγ signaling pathways. Genes Dev. 14, 3179–3190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lesa, G. M. & Sternberg, P. W. Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor. Mol. Biol. Cell 8, 779–793 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Soler, C., Beguinot, L. & Carpenter, G. Individual epidermal growth factor receptor autophosphorylation sites do not stringently define association motifs for several SH2-containing proteins. J. Biol. Chem. 269, 12320–12324 (1994).

    CAS  PubMed  Google Scholar 

  47. Li, N., Schlessinger, J. & Margolis, B. Autophosphorylation mutants of the EGF-receptor signal through auxiliary mechanisms involving SH2 domain proteins. Oncogene 9, 3457–3465 (1994).

    CAS  PubMed  Google Scholar 

  48. Birchmeier, C. & Gherardi, E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 8, 404–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Maina, F. et al. Coupling Met to specific pathways results in distinct developmental outcomes. Mol. Cell 7, 1293–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lowenstein, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431–442 (1992).The first of several papers to describe Grb2 as a link between receptor tyrosine kinases and Raf (see also references 53–56).

    Article  CAS  PubMed  Google Scholar 

  51. Pelicci, G. et al. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93–104 (1992).This report was the first identification of SHC.

    Article  CAS  PubMed  Google Scholar 

  52. Margolis, B. et al. High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains. Proc. Natl Acad. Sci. USA 89, 8894–8898 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, N. et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Olivier, J. P. et al. A Drosophila SH2–SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Gale, N. W., Kaplan, S., Lowenstein, E. J., Schlessinger, J. & Bar-Sagi, D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363, 88–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Lechleider, R. J. et al. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J. Biol. Chem. 268, 21478–21481 (1993).

    CAS  PubMed  Google Scholar 

  58. Klinghoffer, R. A. & Kazlauskas, A. Identification of a putative Syp substrate, the PDGF β receptor. J. Biol. Chem. 270, 22208–22217 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Cleghon, V. et al. Drosophila terminal structure development is regulated by the compensatory activities of positive and negative phosphotyrosine signaling sites on the Torso RTK. Genes Dev. 10, 566–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Cleghon, V. et al. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol. Cell 2, 719–727 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Galisteo, M. L., Dikic, I., Batzer, A. G., Langdon, W. Y. & Schlessinger, J. Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J. Biol. Chem. 270, 20242–20245 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Meng, W., Sawasdikosol, S., Burakoff, S. J. & Eck, M. J. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).Together with references 64–67 , this paper elucidates the recognition of Cbl as a ubiquitin ligase.

    Article  CAS  PubMed  Google Scholar 

  64. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lill, N. L. et al. The evolutionarily conserved N-terminal region of Cbl is sufficient to enhance down-regulation of the epidermal growth factor receptor. J. Biol. Chem. 275, 367–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Miyake, S., Lupher, M. L. Jr, Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor α. Proc. Natl Acad. Sci. USA 95, 7927–7932 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem. 274, 22151–22154 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).Together with references 69–71 , these papers defined the structure of Src-family tyrosine kinases and determined their mechanism of activation.

    Article  CAS  PubMed  Google Scholar 

  69. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Xu, W., Doshi, A., Lei, M., Eck, M. J. & Harrison, S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, X. et al. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119–1126 (1993).

    CAS  PubMed  Google Scholar 

  73. Moarefi, I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Mayer, B. J., Hirai, H. & Sakai, R. Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases. Curr. Biol. 5, 296–305 (1995).Together with references 75 and 76 , these papers show that the SH2 domains of Src-family kinases function to enhance processive phosphorylation.

    Article  CAS  PubMed  Google Scholar 

  75. Pellicena, P., Stowell, K. R. & Miller, W. T. Enhanced phosphorylation of Src family kinase substrates containing SH2 domain binding sites. J. Biol. Chem. 273, 15325–15328 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Scott, M. P. & Miller, W. T. A peptide model system for processive phosphorylation by Src family kinases. Biochemistry 39, 14531–14537 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Eck, M. J., Pluskey, S., Trub, T., Harrison, S. C. & Shoelson, S. E. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature 379, 277–280 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Ottinger, E. A., Botfield, M. C. & Shoelson, S. E. Tandem SH2 domains confer high specificity in tyrosine kinase signaling. J. Biol. Chem. 273, 729–735 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J. & Shoelson, S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Futterer, K., Wong, J., Grucza, R. A., Chan, A. C. & Waksman, G. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J. Mol. Biol. 281, 523–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Blaikie, P. et al. A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269, 32031–32034 (1994).The first recognition of the PTB domain as an alternative phosphotyrosine-binding module.

    CAS  PubMed  Google Scholar 

  82. Kavanaugh, W. M. & Williams, L. T. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266, 1862–1865 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Gustafson, T. A., He, W., Craparo, A., Schaub, C. D. & O'Neill, T. J. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol. Cell. Biol. 15, 2500–2508 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou, M. M. & Fesik, S. W. Structure and function of the phosphotyrosine binding (PTB) domain. Prog. Biophys. Mol. Biol. 64, 221–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Shoelson, S. E. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Curr. Opin. Chem. Biol. 1, 227–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, Y. & Abagyan, R. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Fold. Des. 3, 513–522 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Forman-Kay, J. D. & Pawson, T. Diversity in protein recognition by PTB domains. Curr. Opin. Struct. Biol. 9, 690–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Margolis, B., Borg, J. P., Straight, S. & Meyer, D. The function of PTB domain proteins. Kidney Int. 56, 1230–1237 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Trub, T. et al. Specificity of the PTB domain of Shc for β turn-forming pentapeptide motifs amino-terminal to phosphotyrosine. J. Biol. Chem. 270, 18205–18208 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Van der Geer, P. et al. A conserved amino-terminal SHC domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides. Curr. Biol. 5, 404–412 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Van der Geer, P. et al. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. Proc. Natl Acad. Sci. USA 93, 963–968 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolf, G. et al. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J. Biol. Chem. 270, 27407–27410 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Zhou, S., Margolis, B., Chaudhuri, M., Shoelson, S. E. & Cantley, L. C. The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J. Biol. Chem. 270, 14863–14866 (1995).

    Article  Google Scholar 

  94. Li, S. C. et al. Characterization of the phosphotyrosine-binding domain of the Drosophila Shc protein. J. Biol. Chem. 271, 31855–31862 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Laminet, A. A., Apell, G., Conroy, L. & Kavanaugh, W. M. Affinity, specificity, and kinetics of the interaction of the SHC phosphotyrosine binding domain with asparagine-X-X-phosphotyrosine motifs of growth factor receptors. J. Biol. Chem. 271, 264–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Borg, J. P., Ooi, J., Levy, E. & Margolis, B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229–6241 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, Z. et al. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. EMBO J. 16, 6141–6150 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dho, S. E. et al. The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J. Biol. Chem. 273, 9179–9187 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Chien, C. T., Wang, S., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Numb-associated kinase interacts with the phosphotyrosine binding domain of Numb and antagonizes the function of Numb in vivo. Mol. Cell. Biol. 18, 598–607 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, S. C. et al. Structure of a Numb PTB domain-peptide complex suggests a basis for diverse binding specificity. Nature Struct. Biol. 5, 1075–1083 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Meyer, D., Liu, A. & Margolis, B. Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J. Biol. Chem. 274, 35113–35118 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Peng, X., Greene, L. A., Kaplan, D. R. & Stephens, R. M. Deletion of a conserved juxtamembrane sequence in Trk abolishes NGF-promoted neuritogenesis. Neuron 15, 395–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Meakin, S. O., MacDonald, J. I., Gryz, E. A., Kubu, C. J. & Verdi, J. M. The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J. Biol. Chem. 274, 9861–9870 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Xu, H., Lee, K. W. & Goldfarb, M. Novel recognition motif on fibroblast growth factor receptor mediates direct association and activation of SNT adapter proteins. J. Biol. Chem. 273, 17987–17990 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Ong, S. H. et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol. Cell. Biol. 20, 979–989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, M. M. et al. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584–592 (1995).This study described the first PTB-domain structure that was solved by NMR.

    Article  CAS  PubMed  Google Scholar 

  107. Eck, M. J., Dhe-Paganon, S., Trub, T., Nolte, R. T. & Shoelson, S. E. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85, 695–705 (1996).The first X-ray structure of a PTB domain, which showed how the divergent IRS-1 and SHC PTB domains have the same basic fold but use different residues to bind to phosphotyrosine-containing ligands.

    Article  CAS  PubMed  Google Scholar 

  108. Zhou, M. M. et al. Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-1 PTB domain. Nature Struct. Biol. 3, 388–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Zwahlen, C., Li, S. C., Kay, L. E., Pawson, T. & Forman-Kay, J. D. Multiple modes of peptide recognition by the PTB domain of the cell fate determinant Numb. EMBO J. 19, 1505–1515 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dhalluin, C. et al. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol. Cell 6, 921–929 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Prehoda, K. E., Lee, D. J. & Lim, W. A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Fedorov, A. A., Fedorov, E., Gertler, F. & Almo, S. C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nature Struct. Biol. 6, 661–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Lemmon, M. A. & Ferguson, K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ravichandran, K. S. et al. Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine-binding domain in vivo. Mol. Cell. Biol. 17, 5540–5549 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B. & Cooper, J. A. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell. Biol. 19, 5179–5188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Farooq, A., Plotnikova, O., Zeng, L. & Zhou, M. M. Phosphotyrosine binding domains of Shc and insulin receptor substrate 1 recognize the NPXpY motif in a thermodynamically distinct manner. J. Biol. Chem. 274, 6114–6121 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Ravichandran, K. S. Signaling via Shc family adapter proteins. Oncogene 20, 6322–6330 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Yamanashi, Y. & Baltimore, D. Identification of the Abl- and RasGAP-associated 62 kDa protein as a docking protein, Dok. Cell 88, 205–211 (1997).Together with reference 119 , this study described the first identification of p62dok as a membrane-associated RasGAP-binding molecule that is targeted by activated tyrosine kinases.

    Article  CAS  PubMed  Google Scholar 

  119. Carpino, N. et al. p62(Dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88, 197–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Jones, N. & Dumont, D. J. The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17, 1097–1108 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Jones, N. & Dumont, D. J. Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. Curr. Biol. 9, 1057–1060 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Dankort, D., Jeybala, N., Jones, N., Dumont, D. J. & Muller, W. J. Multiple ErbB-2/Neu phosphorylation sites mediate transformation through distinct effector proteins. J. Biol. Chem. 276, 38921–38928 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Wick, M. J., Dong, L. Q., Hu, D., Langlais, P. & Liu, F. Insulin receptor-mediated p62(superdok) tyrosine phosphorylation at residues 362 and 398 plays distinct roles for binding GAP and Nck and is essential for inhibiting insulin-stimulated activation of Ras and Akt. J. Biol. Chem. 276, 42843–42850 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Yamanashi, Y. et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev. 14, 11–16 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nemorin, J. G. & Duplay, P. Evidence that Llck-mediated phosphorylation of p56dok and p62dok may play a role in CD2 signaling. J. Biol. Chem. 275, 14590–14597 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trommsdorff, M., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33556–33560 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. & Davisson, M. T. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7, 798–802 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Ware, M. L. et al. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239–249 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Rice, D. S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729 (1998).

    CAS  PubMed  Google Scholar 

  134. Garcia, C. K. et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292, 1394–1398 (2001).This study showed that a form of autosomal recessive hypercholesterolaemia is caused by mutations in the ARH protein, which contains a PTB domain that might bind to the LDL receptor.

    Article  CAS  PubMed  Google Scholar 

  135. Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    Article  PubMed  Google Scholar 

  136. Yaich, L. et al. Functional analysis of the Numb phosphotyrosine-binding domain using site-directed mutagenesis. J. Biol. Chem. 273, 10381–10388 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Rahuel, J. et al. Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Nature Struct. Biol. 3, 586–589 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Ogura, K. et al. Solution structure of the SH2 domain of Grb2 complexed with the Shc-derived phosphotyrosine-containing peptide. J. Mol. Biol. 289, 439–445 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Saffran, D. C. et al. Brief report: a point mutation in the SH2 domain of Bruton's tyrosine kinase in atypical X-linked agammaglobulinemia. N. Engl. J. Med. 330, 1488–1491 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nature Genet. 20, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Nichols, K. E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 95, 13765–13770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genet. 29, 465–468 (2001).An elegant example of how mutations in the SHP-2 amino-SH2 domain are associated with a human disease.

    Article  CAS  PubMed  Google Scholar 

  143. Vidal, M., Gigoux, V. & Garbay, C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit. Rev. Oncol. Hematol. 40, 175–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Shakespeare, W. et al. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc. Natl Acad. Sci. USA 97, 9373–9378 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yaffe, M. B. & Cantley, L. C. Mapping specificity determinants for protein–protein association using protein fusions and random peptide libraries. Methods Enzymol. 328, 157–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Tong, A. H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Brannetti, B., Via, A., Cestra, G., Cesareni, G. & Helmer-Citterich, M. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. J. Mol. Biol. 298, 313–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).This study described a classic bioinformatics tool for the study of modular protein domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to the many investigators whose work was not mentioned due to space constraints. This review benefited from helpful discussions with B. Neel and A. Kazlauskas. I am grateful to T. Pawson and B. Margolis for suggestions and critical reading of the manuscript and to L. Cantley for continued advice, support and encouragement. Financial support from NIH grants and a Career Development Award from the Burroughs-Wellcome Fund are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro:

C2

CH

ITAMs

PDZ

PH

PIDs

PLCXc

PLCYc

PTPase

RasGAP

RBD

RGS

SH2

SH3

WW

 LocusLink:

Nck

 Swiss-Prot:

ApoER2

c-Cbl

Disabled

EGF receptor

ErbB2

FE65

Gab1

Gab2

Grb2

Grb10

IRS-1

JIP-1

Lck

Lnx

LDLR

LET-23

Met

Nak

Numb

p85 subunit of PI3K

PDGFβ receptor

PLCγ

RasGAP

Reelin

SAP

SHC

SHP-1

SHP-2

SOS

Syk

Tek/Tie2

TrkA

VASP

VLDLR

X11

ZAP-70

Glossary

PROTEOME

The entire protein complement of an organism.

MESANGIAL CELL

A type of kidney cell that contacts endothelial cells in glomerular capillaries.

PLECKSTRIN HOMOLOGY (PH) DOMAIN

A sequence of 100 amino acids that is present in many signalling molecules and binds to lipid products of phosphatidyl-inositol 3-kinase. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

RING-FINGER PROTEINS

A family of proteins that are structurally defined by the presence of a zinc-binding RING-finger motif. The RING consensus sequence is: CX2CX(9–39)CX(1–3)HX(2–3)C/HX2CX(4–48)CX2C. The cysteines and histidines represent metal-binding sites. The first, second, fifth and sixth of these bind one zinc ion and the third, fourth, seventh and eighth bind the second.

ALLOSTERIC ACTIVATOR

A protein or enzyme that binds to its substrate, modulates the shape of it and positively influences its activity.

E2 ENZYME

An enzyme that accepts ubiquitin or a ubiquitin-like protein from an E1 enzyme and transfers it to the substrate, mostly by using an E3 enzyme.

TYPE II POLYPROLINE HELIX

A structure that serves as a docking site for the Src-homology-3 domain.

β-SANDWICH

A tertiary protein structure that is common to all immuno-globulins. Consists of β-strands arranged into two β-sheets that pack together as a sandwich.

ENTHALPY

The thermodynamic property of a system, which includes changes in internal energy and work done on the surroundings.

ENTROPY

A thermodynamic property related to the state of disorder of a system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaffe, M. Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3, 177–186 (2002). https://doi.org/10.1038/nrm759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing