Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A two-segment model for thin filament architecture in skeletal muscle

Abstract

Correct specification of myofilament length is essential for efficient skeletal muscle contraction. The length of thin actin filaments can be explained by a novel 'two-segment' model, wherein the thin filaments consist of two concatenated segments, which are of either constant or variable length. This is in contrast to the classic 'nebulin ruler' model, which postulates that thin filaments are uniform structures, the lengths of which are dictated by nebulin. The two-segment model implicates position-specific microregulation of actin dynamics as a general principle underlying actin filament length and stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nebulin ruler model for thin filament length regulation in skeletal muscle.
Figure 2: A novel two-segment model for thin filament architecture in skeletal muscle.

Similar content being viewed by others

References

  1. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fowler, V. M. Regulation of actin filament length in erythrocytes and striated muscle. Curr. Opin. Cell Biol. 8, 86–96 (1996).

    CAS  PubMed  Google Scholar 

  3. Mooseker, M. S. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1, 209–241 (1985).

    CAS  PubMed  Google Scholar 

  4. Tilney, L. G., Tilney, M. S. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell Biol. 8, 257–274 (1992).

    CAS  PubMed  Google Scholar 

  5. Huxley, H. & Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976 (1954).

    CAS  PubMed  Google Scholar 

  6. Huxley, A. F. & Niedergerke, R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173, 971–973 (1954).

    CAS  PubMed  Google Scholar 

  7. Granzier, H. L., Akster, H. A. & Ter Keurs, H. E. Effect of thin filament length on the force–sarcomere length relation of skeletal muscle. Am. J. Physiol. 260, C1060–C1070 (1991).

    CAS  PubMed  Google Scholar 

  8. Walker, S. M. & Schrodt, G. R. I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat. Rec. 178, 63–81 (1974).

    CAS  PubMed  Google Scholar 

  9. Edman, K. A. The relation between sarcomere length and active tension in isolated semitendinosus fibres of the frog. J. Physiol. 183, 407–417 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon, A. M., Huxley, A. F. & Julian, F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184, 170–192 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Littlefield, R. S. & Fowler, V. M. Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin. Cell Dev. Biol. 19, 511–519 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nyland, L. R. et al. Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity. Biophys. J. 96, 3273–3280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cripps, R. M., Suggs, J. A. & Bernstein, S. I. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J. 18, 1793–1804 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Margossian, S. S., Huiatt, T. W. & Slayter, H. S. Control of filament length by the regulatory light chains in skeletal and cardiac myosins. J. Biol. Chem. 262, 5791–5796 (1987).

    CAS  PubMed  Google Scholar 

  15. Suggs, J. A. et al. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length. J. Mol. Biol. 367, 1312–1329 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanson, J. & Lowy, J. The structure of F-actin and of actin filaments isolated from muscle. J. Mol. Biol. 6, 46–60 (1963).

    CAS  Google Scholar 

  17. Oosawa, F. & Asakura, S. Thermodynamics of the polymerization of protein. (Academic Press, 1975).

    Google Scholar 

  18. Littlefield, R. & Fowler, V. M. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu. Rev. Cell Dev. Biol. 14, 487–525 (1998).

    CAS  PubMed  Google Scholar 

  19. Casella, J. F., Craig, S. W., Maack, D. J. & Brown, A. E. Cap Z(36/32), a barbed end actin-capping protein, is a component of the Z-line of skeletal muscle. J. Cell Biol. 105, 371–379 (1987).

    CAS  PubMed  Google Scholar 

  20. Hart, M. C. & Cooper, J. A. Vertebrate isoforms of actin capping protein-β have distinct functions in vivo. J. Cell Biol. 147, 1287–1298 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schafer, D. A., Hug, C. & Cooper, J. A. Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J. Cell Biol. 128, 61–70 (1995).

    CAS  PubMed  Google Scholar 

  22. Schafer, D. A., Korshunova, Y. O., Schroer, T. A. & Cooper, J. A. Differential localization and sequence analysis of capping protein β-subunit isoforms of vertebrates. J. Cell Biol. 127, 453–465 (1994).

    CAS  PubMed  Google Scholar 

  23. Cooper, J. A. & Sept, D. New insights into mechanism and regulation of actin capping protein. Int. Rev. Cell Mol. Biol. 267, 183–206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gokhin, D. S. et al. Thin-filament length correlates with fiber type in human skeletal muscle. Am. J. Physiol. Cell Physiol. 302, C555–C565 (2012).

    CAS  PubMed  Google Scholar 

  25. Gokhin, D. S. et al. Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology. J. Cell Biol. 189, 95–109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fowler, V. M., Sussmann, M. A., Miller, P. G., Flucher, B. E. & Daniels, M. P. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J. Cell Biol. 120, 411–420 (1993).

    CAS  PubMed  Google Scholar 

  27. Almenar-Queralt, A., Lee, A., Conley, C. A., Ribas de Pouplana, L. & Fowler, V. M. Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J. Biol. Chem. 274, 28466–28475 (1999).

    CAS  PubMed  Google Scholar 

  28. Gokhin, D. S. & Fowler, V. M. Tropomodulin capping of actin filaments in striated muscle development and physiology. J. Biomed. Biotechnol. 2011, 103069 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Littlefield, R., Almenar-Queralt, A. & Fowler, V. M. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nature Cell Biol. 3, 544–551 (2001).

    CAS  PubMed  Google Scholar 

  30. Gregorio, C. C., Weber, A., Bondad, M., Pennise, C. R. & Fowler, V. M. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377, 83–86 (1995).

    CAS  PubMed  Google Scholar 

  31. Bai, J., Hartwig, J. H. & Perrimon, N. SALS, a WH2- domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth. Dev. Cell 13, 828–842 (2007).

    CAS  PubMed  Google Scholar 

  32. Mardahl-Dumesnil, M. & Fowler, V. M. Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J. Cell Biol. 155, 1043–1053 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mudry, R. E., Perry, C. N., Richards, M., Fowler, V. M. & Gregorio, C. C. The interaction of tropomodulin with tropomyosin stabilizes thin filaments in cardiac myocytes. J. Cell Biol. 162, 1057–1068 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weber, A., Pennise, C. R., Babcock, G. G. & Fowler, V. M. Tropomodulin caps the pointed ends of actin filaments. J. Cell Biol. 127, 1627–1635 (1994).

    CAS  PubMed  Google Scholar 

  35. Weber, A., Pennise, C. R. & Fowler, V. M. Tropomodulin increases the critical concentration of barbed end-capped actin filaments by converting ADP•Pi-actin to ADP-actin at all pointed filament ends. J. Biol. Chem. 274, 34637–34645 (1999).

    CAS  PubMed  Google Scholar 

  36. Broschat, K. O. Tropomyosin prevents depolymerization of actin filaments from the pointed end. J. Biol. Chem. 265, 21323–21329 (1990).

    CAS  PubMed  Google Scholar 

  37. Broschat, K. O., Weber, A. & Burgess, D. R. Tropomyosin stabilizes the pointed end of actin filaments by slowing depolymerization. Biochemistry 28, 8501–8506 (1989).

    CAS  PubMed  Google Scholar 

  38. Ono, S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton 67, 677–692 (2010).

    CAS  PubMed  Google Scholar 

  39. Yamashiro, S., Gokhin, D. S., Kimura, S., Nowak, R. B. & Fowler, V. M. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton 69, 337–370 (2012).

    CAS  PubMed  Google Scholar 

  40. Pappas, C. T., Bliss, K. T., Zieseniss, A. & Gregorio, C. C. The nebulin family: an actin support group. Trends Cell Biol. 21, 29–37 (2011).

    CAS  PubMed  Google Scholar 

  41. McElhinny, A. S., Kolmerer, B., Fowler, V. M., Labeit, S. & Gregorio, C. C. The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J. Biol. Chem. 276, 583–592 (2001).

    CAS  PubMed  Google Scholar 

  42. Pappas, C. T., Bhattacharya, N., Cooper, J. A. & Gregorio, C. C. Nebulin interacts with CapZ and regulates thin filament architecture within the Z-disc. Mol. Biol. Cell 19, 1837–1847 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kruger, M., Wright, J. & Wang, K. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J. Cell Biol. 115, 97–107 (1991).

    CAS  PubMed  Google Scholar 

  44. Labeit, S. et al. Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett. 282, 313–316 (1991).

    CAS  PubMed  Google Scholar 

  45. Castillo, A., Nowak, R., Littlefield, K. P., Fowler, V. M. & Littlefield, R. S. A nebulin ruler does not dictate thin filament lengths. Biophys. J. 96, 1856–1865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Littlefield, R. & Fowler, V. M. Measurement of thin filament lengths by distributed deconvolution analysis of fluorescence images. Biophys. J. 82, 2548–2564 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ochala, J. et al. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum. Mol. Genet. 21, 4473–4485 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ringkob, T. P., Swartz, D. R. & Greaser, M. L. Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils. J. Anim. Sci. 82, 1445–1453 (2004).

    CAS  PubMed  Google Scholar 

  49. Buck, D., Hudson, B. D., Ottenheijm, C. A., Labeit, S. & Granzier, H. Differential splicing of the large sarcomeric protein nebulin during skeletal muscle development. J. Struct. Biol. 170, 325–333 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Millevoi, S. et al. Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J. Mol. Biol. 282, 111–123 (1998).

    CAS  PubMed  Google Scholar 

  51. Bang, M. L. et al. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J. Cell Biol. 173, 905–916 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Moncman, C. L. & Wang, K. Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil. Cytoskeleton 32, 205–225 (1995).

    CAS  PubMed  Google Scholar 

  53. Moncman, C. L. & Wang, K. Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Exp. Cell Res. 273, 204–218 (2002).

    CAS  PubMed  Google Scholar 

  54. Pappas, C. T., Krieg, P. A. & Gregorio, C. C. Nebulin regulates actin filament lengths by a stabilization mechanism. J. Cell Biol. 189, 859–870 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Witt, C. C. et al. Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J. 25, 3843–3855 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gokhin, D. S., Bang, M. L., Zhang, J., Chen, J. & Lieber, R. L. Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties. Am. J. Physiol. Cell Physiol. 296, C1123–C1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Galkin, V. E., Orlova, A., Schroder, G. F. & Egelman, E. H. Structural polymorphism in F-actin. Nature Struct. Mol. Biol. 17, 1318–1323 (2010).

    CAS  Google Scholar 

  58. Sussman, M. A. et al. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ. Res. 82, 94–105 (1998).

    CAS  PubMed  Google Scholar 

  59. Gokhin, D. S. & Fowler, V. M. Cytoplasmic γ-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. J. Cell Biol. 194, 105–120 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gokhin, D. S. & Fowler, V. M. The sarcoplasmic reticulum: actin and tropomodulin hit the links. Bioarchitecture 1, 175–179 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Tsukada, T. et al. Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J. Cell Sci. 123, 3136–3145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chereau, D. et al. Leiomodin is an actin filament nucleator in muscle cells. Science 320, 239–243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap, S. V. & Bloch, R. J. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol. Rev. 89, 1217–1267 (2009).

    CAS  PubMed  Google Scholar 

  64. Katzemich, A. et al. The function of the M-line protein, obscurin, in controlling the symmetry of the sarcomere in Drosophila flight muscle. J. Cell Sci. 125, 3367–3379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lange, S. et al. Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J. Cell Sci. 122, 2640–2650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Skwarek-Maruszewska, A., Hotulainen, P., Mattila, P. K. & Lappalainen, P. Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J. Cell Sci. 122, 2119–2126 (2009).

    CAS  PubMed  Google Scholar 

  67. Ramachandran, I., Terry, M. & Ferrari, M. B. Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis. Cell Motil. Cytoskeleton 55, 61–72 (2003).

    CAS  PubMed  Google Scholar 

  68. Kagawa, M., Sato, N. & Obinata, T. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture. Zool. Sci. 23, 969–975 (2006).

    CAS  Google Scholar 

  69. Soeno, Y., Shimada, Y. & Obinata, T. BDM (2,3-butanedione monoxime), an inhibitor of myosin-actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture. Cell Tissue Res. 295, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  70. Wallgren-Pettersson, C., Sewry, C. A., Nowak, K. J. & Laing, N. G. Nemaline myopathies. Semin. Pediatr. Neurol. 18, 230–238 (2011).

    PubMed  Google Scholar 

  71. Ottenheijm, C. A. et al. Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency. Hum. Mol. Genet. 18, 2359–2369 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ottenheijm, C. A. et al. Altered myofilament function depresses force generation in patients with nebulin-based nemaline myopathy (NEM2). J. Struct. Biol. 170, 334–343 (2010).

    CAS  PubMed  Google Scholar 

  73. Telfer, W. R., Nelson, D. D., Waugh, T., Brooks, S. V. & Dowling, J. J. Neb: a zebrafish model of nemaline myopathy due to nebulin mutation. Dis. Model. Mech. 5, 389–396 (2012).

    CAS  PubMed  Google Scholar 

  74. Marston, S. B. & Hodgkinson, J. L. Cardiac and skeletal myopathies: can genotype explain phenotype? J. Muscle Res. Cell Motil. 22, 1–4 (2001).

    CAS  PubMed  Google Scholar 

  75. Agrawal, P. B. et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am. J. Hum. Genet. 80, 162–167 (2007).

    CAS  PubMed  Google Scholar 

  76. Ockeloen, C. W. et al. Congenital myopathy caused by a novel missense mutation in the CFL2 gene. Neuromuscul. Disord. 22, 632–639 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ochala, J. et al. Disrupted myosin cross-bridge cycling kinetics triggers muscle weakness in nebulin-related myopathy. FASEB J. 25, 1903–1913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bang, M. L. et al. Nebulin plays a direct role in promoting strong actin-myosin interactions. FASEB J. 23, 4117–4125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ottenheijm, C. A. et al. Sarcoplasmic reticulum calcium uptake and speed of relaxation are depressed in nebulin-free skeletal muscle. FASEB J. 22, 2912–2919 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chandra, M. et al. Nebulin alters cross-bridge cycling kinetics and increases thin filament activation: a novel mechanism for increasing tension and reducing tension cost. J. Biol. Chem. 284, 30889–30896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Manor, U. & Kachar, B. Dynamic length regulation of sensory stereocilia. Semin. Cell Dev. Biol. 19, 502–510 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Nambiar, R., McConnell, R. E. & Tyska, M. J. Myosin motor function: the ins and outs of actin-based membrane protrusions. Cell. Mol. Life Sci. 67, 1239–1254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, D. S. et al. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature 481, 520–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Page, S. G. & Huxley, H. E. Filament lengths in striated muscle. J. Cell Biol. 19, 369–390 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Burgoyne, T., Muhamad, F. & Luther, P. K. Visualization of cardiac muscle thin filaments and measurement of their lengths by electron tomography. Cardiovasc. Res. 77, 707–712 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors laboratory was supported by the US National Institutes of Health (NIH) grants R01-HL083464 and P30-AR061303 (to V.M.F.) and a development grant from the Muscular Dystrophy Association (to D.S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia M. Fowler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Velia M. Fowler's homepage

Distributed Deconvolution (DDecon)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhin, D., Fowler, V. A two-segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol 14, 113–119 (2013). https://doi.org/10.1038/nrm3510

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing