Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Origins of regulated cell-to-cell variability

Abstract

Single-cell measurements and lineage-tracing experiments are revealing that phenotypic cell-to-cell variability is often the result of deterministic processes, despite the existence of intrinsic noise in molecular networks. In most cases, this determinism represents largely uncharacterized molecular regulatory mechanisms, which places the study of cell-to-cell variability in the realm of molecular cell biology. Further research in the field will be important to advance quantitative cell biology because it will provide new insights into the mechanisms by which cells coordinate their intracellular activities in the spatiotemporal context of the multicellular environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Explaining the regulated cell-to-cell variability of SV40 infection.
Figure 2: Measuring cellular activities in the full spectrum of the mammalian population context.
Figure 3: Revealing determinism in cell-to-cell variability.

Similar content being viewed by others

References

  1. Niepel, M., Spencer, S. & Sorger, P. Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr. Opin. Chem. Biol. 13, 556–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, T. & Covert, M. High-throughput, single-cell NF-κB dynamics. Curr. Opin. Genet. Dev. 20, 1–7 (2010).

    CAS  Google Scholar 

  4. Spiller, D., Wood, C., Rand, D. & White, M. Measurement of single-cell dynamics. Nature 465, 736–745 (2010).

    CAS  PubMed  Google Scholar 

  5. Muzzey, D. & van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Ann. Rev. Cell Dev. 25, 301–327 (2009).

    CAS  Google Scholar 

  6. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009).

    CAS  PubMed  Google Scholar 

  7. Singh, D. K. et al. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol. Syst. Biol. 6, 369 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    CAS  PubMed  Google Scholar 

  9. Spencer, S., Gaudet, S., Albeck, J., Burke, J. & Sorger, P. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nature Rev. Genet. 10, 336–342 (2009).

    CAS  PubMed  Google Scholar 

  11. Kumar, R., Kuniyasu, H., Bucana, C. D., Wilson, M. R. & Fidler, I. J. Spatial and temporal expression of angiogenic molecules during tumor growth and progression. Oncol. Res. 10, 301–311 (1998).

    CAS  PubMed  Google Scholar 

  12. Hoek, K. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650–656 (2008).

    CAS  PubMed  Google Scholar 

  13. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ungrin, M., Joshi, C., Nica, A., Bauwens, C. & Zandstra, P. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3, e1565 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, Z., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nature Biotech. 28, 521–526 (2010).

    CAS  Google Scholar 

  17. Tay, S. et al. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 466, 267–271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. St-Pierre, F. & Endy, D. Determination of cell fate selection during phage lambda infection. Proc. Natl Acad. Sci. USA 105, 20705–20710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).

    CAS  PubMed  Google Scholar 

  21. Yu, R. et al. Negative feedback that improves information transmission in yeast signalling. Nature 456, 755–761 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nature Rev. Microbiol. 4, 577–587 (2006).

    CAS  Google Scholar 

  23. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–953 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Veening, J. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Robert, L. et al. Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol. Syst. Biol. 6, 357 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Nachman, I., Regev, A. & Ramanathan, S. Dissecting timing variability in yeast meiosis. Cell 131, 544–556 (2007).

    CAS  PubMed  Google Scholar 

  27. Maheshri, N. & O'Shea, E. K. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007).

    CAS  PubMed  Google Scholar 

  28. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Simpson, M. L. et al. Noise in biological circuits. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 214–225 (2009).

    CAS  PubMed  Google Scholar 

  30. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    CAS  PubMed  Google Scholar 

  31. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  33. Ozbudak, E., Thattai, M., Kurtser, I., Grossman, A. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  34. Raj, A. & van Oudenaarden, A. Single-molecule approaches to stochastic gene expression. Ann. Rev. Biophys. 38, 255–270 (2009).

    CAS  Google Scholar 

  35. Ben-Jacob, E. & Schultz, D. Bacteria determine fate by playing dice with controlled odds. Proc. Natl Acad. Sci. USA 107, 13197–13198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Eldar, A. & Elowitz, M. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Newman, J. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    CAS  PubMed  Google Scholar 

  39. Shahrezaei, V., Ollivier, J. & Swain, P. Colored extrinsic fluctuations and stochastic gene expression. Mol. Syst. Biol. 4, 196 (2008).

    PubMed  PubMed Central  Google Scholar 

  40. Volfson, D. et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861–864 (2005).

    PubMed  Google Scholar 

  41. Noise (entry 11a). OED online[online], (2010).

  42. Gygi, S., Rochon, Y., Franza, B. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dehmelt, L. & Bastiaens, P. Spatial organization of intracellular communication: insights from imaging. Nature Rev. Mol. Cell Biol. 11, 440–452 (2010).

    CAS  Google Scholar 

  44. Scita, G. & Di Fiore, P. The endocytic matrix. Nature 463, 464–473 (2010).

    CAS  PubMed  Google Scholar 

  45. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. cell 28, 730–738 (2007).

    CAS  PubMed  Google Scholar 

  46. Rual, J. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  PubMed  Google Scholar 

  47. Tong, A. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    CAS  PubMed  Google Scholar 

  48. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  49. Neumann, B., Walter, T. & Jean-Karim, H. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).

    CAS  PubMed  Google Scholar 

  51. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J. 3rd & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    CAS  PubMed  Google Scholar 

  52. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. cell 21, 319–330 (2006).

    CAS  PubMed  Google Scholar 

  54. Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Delbrück, M. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124 (1940).

    Google Scholar 

  56. Delbrück, M. The burst size distribution in the growth of bacterial viruses (bacteriophages). J. Bacteriol. 50, 131–135 (1945).

    PubMed  PubMed Central  Google Scholar 

  57. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gillespie, D. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    CAS  Google Scholar 

  59. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Herskowitz, I. & Hagen, D. The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness. Annu. Rev. Genet. 14, 399–445 (1980).

    CAS  PubMed  Google Scholar 

  61. Spudich, J. & Koshland, D. Non-genetic individuality: chance in the single cell. Nature 262, 467–471 (1976).

    CAS  PubMed  Google Scholar 

  62. Eagle, H. & Levine, E. Growth regulatory effects of cellular interaction. Nature 213, 1102–1106 (1967).

    CAS  PubMed  Google Scholar 

  63. Castor, L. Flattening, movement and control of division of epithelial-like cells. J. Cell. Physiol. 75, 57–64 (1970).

    CAS  PubMed  Google Scholar 

  64. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).

    CAS  PubMed  Google Scholar 

  65. Malleshaiah, M., Shahrezaei, V., Swain, P. & Michnick, S. The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature 465, 101–105 (2010).

    CAS  PubMed  Google Scholar 

  66. Sigal, A. et al. Variability and memory of protein levels in human cells. Nature 444, 643–646 (2006).

    CAS  PubMed  Google Scholar 

  67. Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schauer, K. et al. Probabilistic density maps to study global endomembrane organization. Nature Meth. 7, 560–566 (2010).

    CAS  Google Scholar 

  69. Ben-Jacob, E. Learning from bacteria about natural information processing. Ann. N. Y. Acad. Sci. 1178, 78–90 (2009).

    CAS  PubMed  Google Scholar 

  70. Shapiro, J. Thinking about bacterial populations as multicellular organisms. Ann. Rev. Microbiol. 52, 81–104 (1998).

    CAS  Google Scholar 

  71. Waters, C. & Bassler, B. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    CAS  PubMed  Google Scholar 

  72. Blango, M. & Mulvey, M. Bacterial landlines: contact-dependent signaling in bacterial populations. Curr. Opin. Microbiol. 12, 177–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bischofs, I., Hug, J., Liu, A., Wolf, D. & Arkin, A. Complexity in bacterial cell–cell communication: Quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proc. Natl Acad. Sci. USA 106, 6459–6464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Schultz, D., Wolynes, P. G., Ben Jacob, E. & Onuchic, J. N. Deciding fate in adverse times: sporulation and competence in Bacillus subtilis. Proc. Natl Acad. Sci. USA 106, 21027–21034 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    CAS  PubMed  Google Scholar 

  76. Suel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M. B. Tunability and noise dependence in differentiation dynamics. Science 315, 1716–1719 (2007).

    PubMed  Google Scholar 

  77. Wolf, D. et al. Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE 3, e1700 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. López, D. & Kolter, R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol. Rev. 34, 134–149 (2009).

    PubMed  Google Scholar 

  79. Slack, M. D., Martinez, E. D., Wu, L. F. & Altschuler, S. J. Characterizing heterogeneous cellular responses to perturbations. Proc. Natl Acad. Sci. USA 105, 19306–19311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Peng, S., Maihle, N. J. & Huang, Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29, 2153–2159 (2010).

    CAS  PubMed  Google Scholar 

  81. Zernicka-Goetz, M., Morris, S. & Bruce, A. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nature Rev. Genet. 10, 467–477 (2009).

    CAS  PubMed  Google Scholar 

  82. Keller, P., Schmidt, A., Wittbrodt, J. & Stelzer, E. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    CAS  PubMed  Google Scholar 

  83. Stockholm, D. et al. The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS ONE 2, 394 (2007).

    Google Scholar 

  84. Chang, H., Hemberg, M., Barahona, M., Ingber, D. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA 102, 2760–2765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mayor, S. & Pagano, R. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol. 8, 603–612 (2007).

    CAS  Google Scholar 

  87. Altschuler, S., Angenent, S., Wang, Y. & Wu, L. On the spontaneous emergence of cell polarity. Nature 454, 886–889 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    CAS  PubMed  Google Scholar 

  89. Dunlop, M. J., Cox, R. S. 3rd, Levine, J. H., Murray, R. M. & Elowitz, M. B. Regulatory activity revealed by dynamic correlations in gene expression noise. Nature Genet. 40, 1493–1498 (2008).

    CAS  PubMed  Google Scholar 

  90. Grecco, H. et al. In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays. Nature Meth. 7, 467–472 (2010).

    CAS  Google Scholar 

  91. Perfetto, S., Chattopadhyay, P. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nature Rev. Immunol. 4, 648–655 (2004).

    CAS  Google Scholar 

  92. Carpenter, A. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    PubMed  PubMed Central  Google Scholar 

  93. Ramo, P., Sacher, R., Snijder, B., Begemann, B. & Pelkmans, L. CellClassifier: supervised learning of cellular phenotypes. Bioinformatics 25, 3028–3030 (2009).

    CAS  PubMed  Google Scholar 

  94. Bakal, C., Aach, J., Church, G. & Perrimon, N. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316, 1753–1756 (2007).

    CAS  PubMed  Google Scholar 

  95. Janes, K., Wang, C., Holmberg, K., Cabral, K. & Brugge, J. Identifying single-cell molecular programs by stochastic profiling. Nature Meth. 7, 311–317 (2010).

    CAS  Google Scholar 

  96. Damm, E. M. & Pelkmans, L. Systems biology of virus entry in mammalian cells. Cell. Microbiol. 8, 1219–1227 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    CAS  PubMed  Google Scholar 

  99. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the laboratory for stimulating discussions. Research in the L.P. laboratory is funded by the Swiss National Science Foundation, SystemsX.ch, the European Union; the Swiss Federal Institute of Technology (ETH) Zürich and the University of Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Pelkmans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Lucas Pelkmans's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snijder, B., Pelkmans, L. Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol 12, 119–125 (2011). https://doi.org/10.1038/nrm3044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing