Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of macrophage development and function in peripheral tissues

Key Points

  • Most tissue-resident macrophages arise from embryonic precursors that are recruited to the tissues before birth and can be maintained locally, independently of circulating precursors.

  • Macrophage functional identity is dictated by tissue-derived factors but may also be partly determined by their origin.

  • Macrophage–tissue crosstalk contributes to tissue homeostasis and repair.

  • Circulating monocytes give rise to monocyte-derived cells in inflamed and tumour tissues, but it is unclear whether monocyte-derived cells persist in tissues once inflammation resolves.

  • The exact contribution of monocyte-derived and tissue-resident macrophages to tumour progression remains to be established.

Abstract

Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin of tissue-resident macrophages.
Figure 2: The tissue microenvironment determines macrophage differentiation cues.
Figure 3: IL-34 and CSF2 regulate specific tissue macrophage maintenance.
Figure 4: Macrophage–tissue crosstalk.

Similar content being viewed by others

References

  1. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012). This ImmGen consortia study shows that tissue macrophages have a distinct transcriptional profile that depends on the tissue in which they reside, highlighting the potential contribution of tissue imprinting to macrophage identity.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zagorska, A., Traves, P. G., Lew, E. D., Dransfield, I. & Lemke, G. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 15, 920–928 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 (2013).

    CAS  PubMed  Google Scholar 

  4. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  PubMed  Google Scholar 

  5. Hussell, T. & Bell, T. J. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14, 81–93 (2014).

    CAS  PubMed  Google Scholar 

  6. Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457, 318–321 (2009). This study reveals the contribution of tissue-derived factors in establishing macrophage functional identity.

    CAS  PubMed  Google Scholar 

  7. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    CAS  PubMed  Google Scholar 

  8. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014). This is the first study to establish the epigenetic profile of tissue-resident macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002). This is the first study that shows that adult mononuclear phagocytes of the epidermis are renewed locally and independently of circulating monocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This report describes the first fate mapping model that shows that YS-derived cells can contribute to adult microglia.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    CAS  PubMed  Google Scholar 

  13. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS  PubMed  Google Scholar 

  14. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  15. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013). This study establishes that fetal monocytes differentiate into alveolar macrophages in response to local CFS2.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).

    CAS  PubMed  Google Scholar 

  18. Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208, 227–234 (2011). This study shows that macrophages are present in normal numbers in patients that lack monocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanitakis, J., Petruzzo, P. & Dubernard, J. M. Turnover of epidermal Langerhans' cells. N. Engl. J. Med. 351, 2661–2662 (2004). This elegant study reports that, in a patient that received a hand allograft, grafted epidermal mononuclear phagocytes (also known as Langerhans cells) remain of donor origin for at least 5 years after transplant, which suggests that, similar to findings in mice, Langerhans cells can renew locally and independently of circulating precursors.

    CAS  PubMed  Google Scholar 

  21. Collin, M. P. et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 203, 27–33 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mielcarek, M. et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation 98, 563–568 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Lichanska, A. M. & Hume, D. A. Origins and functions of phagocytes in the embryo. Exp. Hematol. 28, 601–611 (2000).

    CAS  PubMed  Google Scholar 

  24. Naito, M. et al. Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J. Leukoc. Biol. 59, 133–138 (1996).

    CAS  PubMed  Google Scholar 

  25. Takahashi, K., Yamamura, F. & Naito, M. Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J. Leukoc. Biol. 45, 87–96 (1989). This study shows that YS-derived primitive macrophages actively proliferate and colonize the embryonic tissues, where they differentiate into fetal macrophages before the development of monocytes.

    CAS  PubMed  Google Scholar 

  26. Naito, M., Takahashi, K. & Nishikawa, S. Development, differentiation, and maturation of macrophages in the fetal mouse liver. J. Leukoc. Biol. 48, 27–37 (1990).

    CAS  PubMed  Google Scholar 

  27. Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001). This study shows that YS-derived macrophages colonize zebrafish embryos before the onset of blood circulation.

    CAS  PubMed  Google Scholar 

  28. Bertrand, J. Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood 106, 3004–3011 (2005). This study describes the different waves of myelopoiesis in the mouse YS.

    CAS  PubMed  Google Scholar 

  29. Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084 (1999). This study identifies YS-derived cells with erythroid and myeloid potential.

    CAS  PubMed  Google Scholar 

  30. Tavian, M. & Péault, B. Embryonic development of the human hematopoietic system. Int. J. Dev. Biol. 49, 243–250 (2005).

    CAS  PubMed  Google Scholar 

  31. McGrath, K. E., Koniski, A. D., Malik, J. & Palis, J. Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101, 1669–1676 (2003).

    CAS  PubMed  Google Scholar 

  32. Palis, J. & Yoder, M. C. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp. Hematol. 29, 927–936 (2001).

    CAS  PubMed  Google Scholar 

  33. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    CAS  PubMed  Google Scholar 

  34. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cumano, A. & Godin, I. Ontogeny of the hematopoietic system. Annu. Rev. Immunol. 25, 745–785 (2007).

    CAS  PubMed  Google Scholar 

  36. Samokhvalov, I. M., Samokhvalova, N. I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007). This is the first fate mapping model to trace the progeny of YS-derived cells.

    CAS  PubMed  Google Scholar 

  37. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoeffel, G. et al. C-myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015). This study reveals the contribution of the distinct YS haematopoiesis waves to microglia versus other tissue-resident macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schneider, C. et al. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15, 1026–1037 (2014).

    CAS  PubMed  Google Scholar 

  40. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012). This study shows that MYB-deficient mice retain fetal F4/80hi macrophages.

    CAS  PubMed  Google Scholar 

  41. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    PubMed  Google Scholar 

  42. McGrath, K. E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156 (2007).

    CAS  PubMed  Google Scholar 

  44. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011). This study indicates that, upon helminth infection, the T helper 2-type cytokine IL-4 drives the expansion of pleural tissue-resident macrophages without any contribution from monocyte-derived macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghosn, E. E. et al. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc. Natl Acad. Sci. USA 107, 2568–2573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011). This study shows that monocyte-derived macrophages infiltrate, but do not engraft long term in, the inflamed brain.

    CAS  PubMed  Google Scholar 

  48. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    CAS  PubMed  Google Scholar 

  50. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    CAS  PubMed  Google Scholar 

  51. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sere, K. et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37, 905–916 (2012).

    CAS  PubMed  Google Scholar 

  53. Nagao, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13, 744–752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Blériot, C. et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42, 145–158 (2015).

    PubMed  Google Scholar 

  55. Zigmond, E. et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 193, 344–353 (2014).

    CAS  PubMed  Google Scholar 

  56. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Winter, D. R. & Amit, I. The role of chromatin dynamics in immune cell development. Immunol. Rev. 261, 9–22 (2014).

    CAS  PubMed  Google Scholar 

  59. Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–197 (1988).

    CAS  PubMed  Google Scholar 

  61. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    CAS  PubMed  Google Scholar 

  62. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    CAS  PubMed  Google Scholar 

  63. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cain, D. W. et al. Identification of a tissue-specific, C/EBPβ-dependent pathway of differentiation for murine peritoneal macrophages. J. Immunol. 191, 4665–4675 (2013).

    CAS  PubMed  Google Scholar 

  66. Aziz, A., Soucie, E., Sarrazin, S. & Sieweke, M. H. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 326, 867–871 (2009).

    CAS  PubMed  Google Scholar 

  67. Kelly, L. M., Englmeier, U., Lafon, I., Sieweke, M. H. & Graf, T. MafB is an inducer of monocytic differentiation. EMBO J. 19, 1987–1997 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156, 1223–1234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Spann, N. J. & Glass, C. K. Sterols and oxysterols in immune cell function. Nat. Immunol. 14, 893–900 (2013).

    CAS  PubMed  Google Scholar 

  71. Cecchini, M. G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 1357–1372 (1994).

    CAS  PubMed  Google Scholar 

  72. Ryan, G. R. et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1op/Csf1op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 98, 74–84 (2001).

    CAS  PubMed  Google Scholar 

  73. Dai, X. M., Zong, X. H., Sylvestre, V. & Stanley, E. R. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood 103, 1114–1123 (2004).

    CAS  PubMed  Google Scholar 

  74. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7, 265–273 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hashimoto, D. et al. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J. Exp. Med. 208, 1069–1082 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. MacDonald, K. P. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).

    CAS  PubMed  Google Scholar 

  77. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014). This study shows that macrophages promote neuronal control of gut peristalsis.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei, S. et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol. 88, 495–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008). This study led to the identification of IL-34 in human blood, a novel cytokine that shares a receptor with CSF1.

    CAS  PubMed  Google Scholar 

  82. Nandi, S. et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367, 100–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Google Scholar 

  85. Borkowski, T. A., Letterio, J. J., Farr, A. G. & Udey, M. C. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417–2422 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bialas, A. R. & Stevens, B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773–1782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Abutbul, S. et al. TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 60, 1160–1171 (2012).

    PubMed  Google Scholar 

  88. Bobr, A. et al. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc. Natl Acad. Sci. USA 109, 10492–10497 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kaplan, D. H. et al. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204, 2545–2552 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chopin, M. et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J. Exp. Med. 210, 2967–2980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4, 380–386 (2003).

    CAS  PubMed  Google Scholar 

  92. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Schneider, C. et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 10, e1004053 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Sainathan, S. K. et al. Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis. Inflamm. Bowel Dis. 14, 88–99 (2008).

    PubMed  Google Scholar 

  96. Hirata, Y., Egea, L., Dann, S. M., Eckmann, L. & Kagnoff, M. F. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe 7, 151–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marini, M., Soloperto, M., Mezzetti, M., Fasoli, A. & Mattoli, S. Interleukin-1 binds to specific receptors on human bronchial epithelial cells and upregulates granulocyte/macrophage colony-stimulating factor synthesis and release. Am. J. Respir. Cell. Mol. Biol. 4, 519–524 (1991).

    CAS  PubMed  Google Scholar 

  98. Egea, L. et al. GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa. J. Immunol. 190, 1702–1713 (2013).

    CAS  PubMed  Google Scholar 

  99. de Groot, R. P., Coffer, P. J. & Koenderman, L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell. Signal. 10, 619–628 (1998).

    CAS  PubMed  Google Scholar 

  100. Wan, C. K. et al. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells. Immunity 38, 514–527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bonfield, T. L. et al. Peroxisome proliferator-activated receptor-γ is deficient in alveolar macrophages from patients with alveolar proteinosis. Am. J. Respir. Cell. Mol. Biol. 29, 677–682 (2003).

    CAS  PubMed  Google Scholar 

  102. Gautier, E. L. et al. Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J. Immunol. 189, 2614–2624 (2012).

    CAS  PubMed  Google Scholar 

  103. Trapnell, B. C., Whitsett, J. A. & Nakata, K. Pulmonary alveolar proteinosis. New Engl. J. Med. 349, 2527–2539 (2003).

    CAS  PubMed  Google Scholar 

  104. Dranoff, G. et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264, 713–716 (1994). This report demonstrates that the absence of local production of CSF2 leads to an accumulation of surfactant in the alveolar space of lung tissue.

    CAS  PubMed  Google Scholar 

  105. Nakamura, A. et al. Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. J. Exp. Med. 210, 2191–2204 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    CAS  PubMed  Google Scholar 

  107. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zigmond, E. et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40, 720–733 (2014).

    CAS  PubMed  Google Scholar 

  109. Shouval, D. S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shah, Y. M., Morimura, K. & Gonzalez, F. J. Expression of peroxisome proliferator-activated receptor-γ in macrophage suppresses experimentally induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G657–G666 (2007).

    PubMed  Google Scholar 

  111. Jiang, C., Ting, A. T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    CAS  PubMed  Google Scholar 

  112. Griseri, T., McKenzie, B. S., Schiering, C. & Powrie, F. Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation. Immunity 37, 1116–1129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Garceau, V. et al. Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J. Leukoc. Biol. 87, 753–764 (2010). This study shows that, similar to findings in mice and humans, IL-34 and CSF1 are present and use the same receptor in chickens.

    CAS  PubMed  Google Scholar 

  114. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Trapnell, B. C. & Whitsett, J. A. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu. Rev. Physiol. 64, 775–802 (2002).

    CAS  PubMed  Google Scholar 

  116. Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723–3738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ganz, T. Macrophages and systemic iron homeostasis. J. Innate Immun. 4, 446–453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cambos, M. & Scorza, T. Robust erythrophagocytosis leads to macrophage apoptosis via a hemin-mediated redox imbalance: role in hemolytic disorders. J. Leukoc. Biol. 89, 159–171 (2011).

    CAS  PubMed  Google Scholar 

  119. Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 19, 429–436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344, 645–648 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gautier, E. L. et al. Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J. Exp. Med. 211, 1525–1531 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    CAS  PubMed  Google Scholar 

  126. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    CAS  PubMed  Google Scholar 

  127. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).

    CAS  PubMed  Google Scholar 

  128. Phan, T. G., Green, J. A., Gray, E. E., Xu, Y. & Cyster, J. G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786–793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Moseman, E. A. et al. B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity 36, 415–426 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gaya, M. et al. Host response. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection. Science 347, 667–672 (2015).

    CAS  PubMed  Google Scholar 

  132. Karlsson, M. C. et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med. 198, 333–340 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Aichele, P. et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 171, 1148–1155 (2003).

    CAS  PubMed  Google Scholar 

  134. A.-Gonzalez, N. et al. The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nat. Immunol. 14, 831–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Joseph, S. B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    CAS  PubMed  Google Scholar 

  136. Kondo, H., Saito, K., Grasso, J. P. & Aisen, P. Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology 8, 32–38 (1988).

    CAS  PubMed  Google Scholar 

  137. Pinto, A. R. et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE 7, e36814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    CAS  PubMed  Google Scholar 

  140. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356–1361 (2001).

    CAS  PubMed  Google Scholar 

  141. Klein, I. et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood 110, 4077–4085 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Suzuki, T. et al. Pulmonary macrophage transplantation therapy. Nature 514, 450–454 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Godleski, J. J. & Brain, J. D. The origin of alveolar macrophages in mouse radiation chimeras. J. Exp. Med. 136, 630–643 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Happle, C. et al. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci. Transl Med. 6, 250ra113 (2014).

    PubMed  Google Scholar 

  145. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181–1189 (2014).

    CAS  PubMed  Google Scholar 

  147. Amir el, A. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotech. 31, 545–552 (2013).

    Google Scholar 

  148. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Blecher-Gonen, R. et al. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat. Protoc. 8, 539–554 (2013).

    PubMed  Google Scholar 

  150. Alvarez-Errico, D., Vento-Tormo, R., Sieweke, M. & Ballestar, E. Epigenetic control of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 15, 7–17 (2014).

    Google Scholar 

  151. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    CAS  PubMed  Google Scholar 

  154. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  157. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).

    CAS  PubMed  Google Scholar 

  158. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6Chigh monocytes. Cancer Res. 70, 5728–5739 (2010).

    CAS  PubMed  Google Scholar 

  159. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    CAS  PubMed  Google Scholar 

  160. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Forssell, J. et al. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res. 13, 1472–1479 (2007).

    CAS  PubMed  Google Scholar 

  162. Kim, D. W. et al. High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. Br. J. Cancer 98, 1118–1124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005). This study describes the crosstalk between macrophages and tumour cells that promotes tumour cell invasion.

    CAS  PubMed  Google Scholar 

  164. Patsialou, A. et al. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 69, 9498–9506 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013). This study shows that microglia derive from an early wave of YS-derived EMPs.

    CAS  PubMed  Google Scholar 

  166. Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Acebes-Casanova, V. Kana and A. Chudnovsky for critical review of the manuscript. This work was supported by the following grants awarded to M.M.: R01CA154947A, R01CA190400, R01CA173861, U01AI095611 and R01AI104848.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Merad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ImmGen website

PowerPoint slides

Glossary

Mononuclear phagocyte system

(MPS). A group of bone marrow-derived cells (monocytes, macrophages and dendritic cells) with different morphologies. These cells are mainly responsible for phagocytosis, cytokine secretion and antigen presentation.

Parabiotic mice

Mice in which the blood circulation has been joined surgically. Parabiotic mice share the same blood circulation and exchange blood precursor cells, thereby providing a model to trace the physiological contribution of circulating precursors to tissue-resident cells.

B-1 cells

An innate-like population of B cells found mainly in the peritoneal and pleural cavities. B-1 cell precursors develop in the fetal liver and omentum. B-1 cells recognize self-antigens as well as common bacterial antigens and secrete antibodies of low affinity and broad specificity.

Omentum

A fatty tissue in the peritoneum that connects the spleen, stomach, pancreas and colon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavin, Y., Mortha, A., Rahman, A. et al. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15, 731–744 (2015). https://doi.org/10.1038/nri3920

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing