Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-specific macrophages: how they develop and choreograph tissue biology

Abstract

Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules — such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contribution of distinct macrophage subsets to tissue function.
Fig. 2: Heterogeneity, ontogeny and self-renewing capacity of macrophage populations in adult tissues during steady state.
Fig. 3: Subtissular niches of tissue-specific macrophages and their role in tissue function.

Similar content being viewed by others

References

  1. Jenkins, S. J. & Allen, J. E. The expanding world of tissue-resident macrophages. Eur. J. Immunol. 51, 1882–1896 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016). This paper describes a macrophage developmental atlas, showing that pMacs are the main progenitors of early tissue-resident macrophages.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, 7777 (2022).

    Article  Google Scholar 

  4. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015). This paper demonstrates that macrophages derive from EMPs.

    Article  PubMed  Google Scholar 

  5. Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013). Together with Hashimoto et al. (2013), these papers demonstrate that tissue-resident macrophages are self-maintaining throughout adulthood.

    Article  CAS  PubMed  Google Scholar 

  7. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Schulz, C. et al. A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science https://doi.org/10.1126/science.1219179 (2012). This paper shows that several tissue-resident macrophage populations are derived from fetal progenitors.

    Article  PubMed  Google Scholar 

  9. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mass, E. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int. Immunol. 30, 493–501 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived. cells Cell 178, 1509–1525.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Werner, Y. et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat. Neurosci. 23, 351–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai, S. M. et al. Organ-specific fate, recruitment, and refilling dynamics of tissue-resident macrophages during blood-stage malaria. Cell Rep. 25, 3099–3109.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hagemeyer, N. et al. Transcriptome‐based profiling of yolk sac‐derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J. 35, 1730–1744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022). This paper shows that pMacs give rise to microglia and meningeal macrophages during embryogenesis, whereas perivascular macrophages originate from perinatal meningeal macrophages only after birth.

    Article  CAS  PubMed  Google Scholar 

  18. Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Füger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017).

    Article  PubMed  Google Scholar 

  22. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).

    Article  PubMed  Google Scholar 

  28. Du, Y., Brennan, F. H., Popovich, P. G. & Zhou, M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 70, 1359–1379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bisht, K. et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat. Commun. 12, 5289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood https://doi.org/10.1182/blood-2009-12-257832 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Tremblay, M.-È., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waisman, A., Ginhoux, F., Greter, M. & Bruttger, J. Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol. 36, 625–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science https://doi.org/10.1126/science.abf7844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rustenhoven, J. & Kipnis, J. Brain borders at the central stage of neuroimmunology. Nature 612, 417–429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seyfried, A. N., Maloney, J. M. & MacNamara, K. C. Macrophages orchestrate hematopoietic programs and regulate HSC function during inflammatory stress. Front. Immunol. 11, 1499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, W., Guo, R., Song, Y. & Jiang, Z. Erythroblastic island macrophages shape normal erythropoiesis and drive associated disorders in erythroid hematopoietic diseases. Front. Cell Dev. Biol. 8, 613885 (2020).

    Article  PubMed  Google Scholar 

  42. Chang, K. H. et al. p62 is required for stem cell/progenitor retention through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche. Cell Rep. 9, 2084–2097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang, M. K. et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181, 1232–1244 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Mohamad, S. F. et al. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv. 1, 2520–2528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McDonald, M. M., Kim, A. S., Mulholland, B. S. & Rauner, M. New insights into osteoclast biology. JBMR 5, e10539 (2021).

    CAS  Google Scholar 

  46. Mansour, A. et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209, 537–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2005).

    Article  PubMed  Google Scholar 

  49. Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F. & Horwood, N. J. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117, 1540–1549 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Yao, Y. et al. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases. Front. Immunol. 12, 1066 (2021).

    Article  Google Scholar 

  51. Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Millard, S. M. et al. Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Rep. 37, 110058 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Gordan, S. et al. The immunological organ environment dictates the molecular and cellular pathways of cytotoxic antibody activity. Cell Rep. 29, 3033–3046.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Grandjean, C. L., Garcia, Z., Lemaître, F., Bréart, B. & Bousso, P. Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis. Sci. Adv. 7, eabd6167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guilliams, M. & Scott, C. L. Liver macrophages in health and disease. Immunity 55, 1515–1529 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Wen, Y., Lambrecht, J., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases — diversity, plasticity and therapeutic opportunities. Cell Mol. Immunol. 18, 45–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Montalvao, F. et al. The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging. J. Clin. Invest. 123, 5098–5103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sierro, F. et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47, 374–388.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Sakai, M. et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655–670.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scott, C. L. et al. The transcription factor ZEB2 is required to maintain the tissue-specific identities of macrophages. Immunity 49, 312–325.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tran, S. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627–640.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Morgantini, C. et al. Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat. Metab. 1, 445–459 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Liang, Y. et al. Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics. Dev. Cell 57, 398–414.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Iannacone, M. et al. Response to contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells. Immunity 55, 1141–1142 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Hume, D. A., Offermanns, S. & Bonnavion, R. Contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells. Immunity 55, 1139–1140 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Blériot, C. et al. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54, 2101–2116.e6 (2021).

    Article  PubMed  Google Scholar 

  70. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022). This paper describes mouse and human liver macrophage heterogeneity and subtissular localization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Haimon, Z. et al. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat. Immunol. 19, 636–644 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weinhard, L. et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9, 1228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Munro, D. A. D. & Hughes, J. The origins and functions of tissue-resident macrophages in kidney development. Front. Physiol. 8, 837 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, X. et al. Heterogeneous origins and functions of mouse skeletal muscle-resident macrophages. Proc. Natl Acad. Sci. USA 117, 20729–20740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Freyer, L. et al. Erythro-myeloid progenitor origin of Hofbauer cells in the early mouse placenta. Development 149, dev200104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGrath, K. E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aegerter, H., Lambrecht, B. N. & Jakubzick, C. V. Biology of lung macrophages in health and disease. Immunity 55, 1564–1580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013). This paper shows that alveolar macrophages are long-lived and contribute to lung function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pernet, E. et al. Neonatal imprinting of alveolar macrophages via neutrophil-derived 12-HETE. Nature https://doi.org/10.1038/S41586-022-05660-7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki, T. et al. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J. Exp. Med. 205, 2703–2710 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, 1–18, eaau0964 (2019).

    Article  Google Scholar 

  85. Ural, B. B. et al. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci. Immunol. 5, eaax8756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gibbings, S. L. et al. Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell Mol. Biol. 57, 66–76 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bain, C. C. & MacDonald, A. S. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol. 15, 223–234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Delfini, M., Stakenborg, N., Viola, M. F. & Boeckxstaens, G. Macrophages in the gut: masters in multitasking. Immunity 55, 1530–1548 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Zigmond, E. et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. https://doi.org/10.1084/jem.20180019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014). Together with Stremmel et al. (2018) Lavin et al. (2015), these papers show that the transcriptional programme of macrophages is driven by their tissue environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cummings, R. J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Chikina, A. S. et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell 183, 411–428.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoffmann, D. et al. Genetic correction of IL-10RB deficiency reconstitutes anti-inflammatory regulation in iPSC-derived macrophages. J. Pers. Med. 11, 221 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ye, Z. et al. Predictive prenatal diagnosis for infantile-onset inflammatory bowel disease because of interleukin-10 signalling defects. J. Pediatr. Gastroenterol. Nutr. 72, 276–281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Schepper, S. et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175, 400–415.e13 (2018). This paper demonstrates that gut-resident macrophages are long-lived and contribute to gut function.

    Article  PubMed  Google Scholar 

  102. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kubo, A., Nagao, K., Yokouchi, M., Sasaki, H. & Amagai, M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206, 2937–2946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kitashima, D. Y. et al. Langerhans cells prevent autoimmunity via expansion of keratinocyte antigen-specific regulatory T cells. eBioMedicine 27, 293–303 (2018).

    Article  PubMed  Google Scholar 

  105. Seneschal, J., Clark, R. A., Gehad, A., Baecher-Allan, C. M. & Kupper, T. S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873–884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kobayashi, T., Naik, S. & Nagao, K. Choreographing immunity in the skin epithelial barrier. Immunity 50, 552–565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park, S. et al. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat. Cell Biol. 23, 476–484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012). This study demonstrates that epidermal Langerhans cells are derived from fetal monocytes undergoing a stepwise differentiation and colonizing the developing epidermis shortly before birth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghigo, C. et al. Multicolor fate mapping of Langerhans cell homeostasis. J. Exp. Med. 210, 1657–1664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002). This paper highlights the endogenous self-renewal capacity of epidermal Langerhans cells throughout life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hovav, A. H. Mucosal and skin Langerhans cells — nurture calls. Trends Immunol. 39, 788–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Capucha, T. et al. Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes. Immunity 43, 369–381 (2015). This study highlights the heterogeneity of Langerhans cell ontogeny in oral mucosa compared with epidermis.

    Article  CAS  PubMed  Google Scholar 

  114. Sparber, F. et al. Langerin+DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathog. 14, e1007069 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Saba, Y. et al. Early antitumor activity of oral Langerhans cells is compromised by a carcinogen. Proc. Natl Acad. Sci. USA 119, e2118424119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Kolter, J. et al. A subset of skin macrophages contributes to the surveillance and regeneration of local nerves. Immunity 50, 1482–1497.e7 (2019). This paper shows dermal macrophage heterogeneity and their specification to defined subanatomical niches in the dermis where they contribute to distinct skin functions.

    Article  CAS  PubMed  Google Scholar 

  118. Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15, 45–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Knab, K., Chambers, D. & Krönke, G. Synovial macrophage and fibroblast heterogeneity in joint homeostasis and inflammation. Front. Med. 9, 930 (2022).

    Article  Google Scholar 

  120. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Selman, M. & Pardo, A. Fibroageing: an ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res. Rev. 70, 101393 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Birjandi, S. Z., Ippolito, J. A., Ramadorai, A. K. & Witte, P. L. Alterations in marginal zone macrophages and marginal zone B cells in old mice. J. Immunol. 186, 3441–3451 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and maintenance of the macrophage niche. Immunity 52, 434–451 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012). This paper describes that macrophages have tissue-specific signatures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stremmel, C. et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9, 75 (2018). This study shows that yolk sac erythromyeloid progenitors migrate to the mouse embryo in a defined embryonic time window via the developing vasculature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tan, Y. L., Yuan, Y. & Tian, L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry 25, 351–367 (2020).

    Article  PubMed  Google Scholar 

  128. Zhang, N. et al. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J. Exp. Med. 218, e20210924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou, X. et al. Circuit design features of a stable two-cell system circuit design features of a stable two-cell system. Cell https://doi.org/10.1016/j.cell.2018.01.015 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gschwend, J. et al. Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. J. Exp. Med. 218, e20210745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  PubMed  Google Scholar 

  133. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Scheiblich, H. et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184, 5089–5106.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. van der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 110, 613–629.e9 (2022).

    Article  PubMed  Google Scholar 

  136. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gordan, S., Biburger, M. & Nimmerjahn, F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol. Rev. 268, 52–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H. & Lambrecht, B. N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 14, 94–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Gordon, S. & Plüddemann, A. Tissue macrophages: heterogeneity and functions. BMC Biol. 15, 1–18 (2017).

    Article  Google Scholar 

  141. Loos, M., Martin, H. & Petry, F. The biosynthesis of C1q, the collagen-like and Fc-recognizing molecule of the complement system. Behring Inst. Mitt. 84, 32–41 (1989).

    CAS  Google Scholar 

  142. Hussell, T. Heterologous immunity meets tissue-specific training. Nat. Rev. Immunol. 16, 275–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Machiels, B. et al. A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat. Immunol. 18, 1310–1320 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Zahalka, S. et al. Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol. 15, 896–907 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 21, 145–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, F. et al. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection. Sci. Immunol. 7, eabj5761 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Ahrends, T. et al. Enteric pathogens induce tissue tolerance and prevent neuronal loss from subsequent infections. Cell 184, 5715–5727.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou, X. et al. Microenvironmental sensing by fibroblasts controls macrophage population size. Proc. Natl Acad. Sci. USA 119, e2205360119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wardemann, H. & Nussenzweig, M. C. B-cell self-tolerance in humans. Adv. Immunol. 95, 83–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Vorsatz, C., Friedrich, N., Nimmerjahn, F. & Biburger, M. There is strength in numbers: quantitation of Fc gamma receptors on murine tissue-resident macrophages. Int. J. Mol. Sci. 22, 12172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Licht, R., Dieker, J. W. C., Jacobs, C. W. M., Tax, W. J. M. & Berden, J. H. M. Decreased phagocytosis of apoptotic cells in diseased SLE mice. J. Autoimmun. 22, 139–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Poon, I. K. H., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yamasaki, S. et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat. Immunol. 9, 1179–1188 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Brown, G. D. Sensing necrosis with Mincle. Nat. Immunol. 9, 1099–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019). This paper shows that synovial macrophages are long-lived and are essential for joint function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sjef Verbeek, J., Hirose, S. & Nishimura, H. The complex association of FcγRIIb with autoimmune susceptibility. Front. Immunol. 10, 2061 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Smith, K. G. C. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, H. et al. The FGL2-FcgammaRIIB pathway: a novel mechanism leading to immunosuppression. Eur. J. Immunol. 38, 3114–3126 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Bennett, F. C. et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron https://doi.org/10.1016/j.neuron.2018.05.014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Li, F., Okreglicka, K. M., Pohlmeier, L. M., Schneider, C. & Kopf, M. Fetal monocytes possess increased metabolic capacity and replace primitive macrophages in tissue macrophage development. EMBO J. 39, e103205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    Article  PubMed  Google Scholar 

  164. Hsu, T. C., Ku, K. Y., Shen, H. C. & Yu, H. H. Overview of MARCM-related technologies in Drosophila neurobiological research. Curr. Protoc. Neurosci. 91, e90 (2020).

    Article  PubMed  Google Scholar 

  165. Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020). This paper provides a human macrophage developmental atlas.

    Article  CAS  PubMed  Google Scholar 

  168. Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ben-Yehuda, H. et al. Maternal type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0604-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  PubMed  Google Scholar 

  172. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028.e13 (2017). Together with Okabe and Medzhitov (2014) and Zaman and Epelman (2022), these papers report on the advantages and the development of the Wildling mouse model to study immunity and model human immune responses in the mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zaman, R. & Epelman, S. Resident cardiac macrophages: heterogeneity and function in health and disease. Immunity 55, 1549–1563 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Lavin, Y., Mortha, A., Rahman, A. & Merad, M. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15, 731–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Park, M. D., Silvin, A., Ginhoux, F. & Merad, M. Macrophages in health and disease. Cell 185, 4259–4279 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nobs, S. P. & Kopf, M. Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol. 42, 495–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Chakarov, S., Blériot, C. & Ginhoux, F. Role of adipose tissue macrophages in obesity-related disorders. J. Exp. Med. 219, e20211948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chang, Z.-L. Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol. Cell 101, 709–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Dionne, M. S. & Schneider, D. S. Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis. Model. Mech. 1, 43–49 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Buchon, N., Silverman, N. & Cherry, S. Immunity in Drosophila melanogaster — from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14, 796–810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stuart, L. M. & Ezekowitz, R. A. Phagocytosis and comparative innate immunity: learning on the fly. Nat. Rev. Immunol. 8, 131–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Kierdorf, K. & Dionne, M. S. The software and hardware of macrophages: a diversity of options. Dev. Cell 38, 122–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Gold, K. S. & Brückner, K. Macrophages and cellular immunity in Drosophila melanogaster. Semin. Immunol. 27, 357–368 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Makhijani, K., Alexander, B., Tanaka, T., Rulifson, E. & Brückner, K. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138, 5379–5391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lanot, R., Zachary, D., Holder, F. & Meister, M. Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Mase, A., Augsburger, J. & Brückner, K. Macrophages and their organ locations shape each other in development and homeostasis — a Drosophila perspective. Front. Cell Dev. Biol. 9, 630272 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Cattenoz, P. B. et al. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J. 39, e104486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tattikota, S. G. et al. A single-cell survey of Drosophila blood. eLife 9, 1–35, e54818 (2020).

  192. Cho, B. et al. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 11, 4483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. H, L. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022). This study represents the results of the Fly Cell Atlas consortium to provide a complex single cell transcriptomic atlas of adult Drosophila melanogaster.

    Article  Google Scholar 

  194. Woodcock, K. J. et al. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42, 133–144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Cox, N. et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 373, eabe9383 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Danzer, H. et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. eLife 9, 1–53, e55319 (2020).

  197. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wege, A. K. et al. IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget 8, 2731–2744 (2017).

    Article  PubMed  Google Scholar 

  199. Evren, E. et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 54, 259–275.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Evren, E. et al. CD116+ fetal precursors migrate to the perinatal lung and give rise to human alveolar macrophages. J. Exp. Med. 219, e20210987 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Keshvari, S. et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 17, e1009605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pridans, C. et al. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the CSF1R locus. J. Immunol. 201, 2683–2699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Rojo, R. et al. Deletion of a CSF1R enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Hume, D. A. et al. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J. Leukoc. Biol. 107, 205–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Monies, D. et al. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet. Med. 19, 1144–1150 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Oosterhof, N. et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104, 936–947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guo, L. et al. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104, 925–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Konno, T., Kasanuki, K., Ikeuchi, T., Dickson, D. W. & Wszolek, Z. K. CSF1R-related leukoencephalopathy: a major player in primary microgliopathies. Neurology 91, 1092–1104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bissinger, S. et al. Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci. Transl. Med. 13, eabd4550 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Kawamura, T. et al. Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J. Clin. Invest. 122, 722–732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Suzuki, T. & Trapnell, B. C. Pulmonary alveolar proteinosis syndrome. Clin. Chest Med. 37, 431–440 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2018). Together with Keren-Shaul et al. (2017) and Nguyen et al. (2020), these papers demonstrate the complexity of microglial heterogeneity across different anatomical brain regions in development, health and disease via single-cell gene expression profiling.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Nguyen, A. T. et al. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neuropathol. 140, 477–493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, S. et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell 185, 4153–4169.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Hou, J., Chen, Y., Grajales-Reyes, G. & Colonna, M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol. Neurodegener. 17, 84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Jordão, M. J. C. et al. Neuroimmunology: single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    Article  PubMed  Google Scholar 

  226. Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Munro, D. A. D. et al. CNS macrophages differentially rely on an intronic Csf1r enhancer for their development. Development 147, dev194449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chen, Y. & Colonna, M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J. Exp. Med. 218, e20202717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bain, C. C. et al. CD11c identifies microbiota and EGR2-dependent MHCII+ serous cavity macrophages with sexually dimorphic fate in mice. Eur. J. Immunol. 52, 1243–1257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ostendorf, B. N. et al. Common human genetic variants of APOE impact murine COVID-19 mortality. Nature 611, 346–351 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Chadarevian, J. P. et al. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J. Exp. Med. 220, 20220857 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all their laboratory members for their ambitious work and passionate research on myeloid cells. The authors apologize to all colleagues, whose work could not be cited in this work owing to space limitations. E.M. and A.S. are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC 2151 — 390873048. E.M. is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 851257) and by the DFG Grant SFB1454 (projects INST 217/1042-1 and INST 217/1037-1). F.N. is supported by the Deutsche Forschungsgemeinschaft (CRC 1181-A07, CRC1526-A07, TRR305-B02, FOR2953-P3, FOR2886-P2) and the NIH (U19 AI142790, RFA-AI-18-042). K.K. is supported by a project grant of the Fritz Thyssen Foundation and the German Research Foundation (DFG) by project grants within the SFB/TRR167 (Project ID 259373024), the CRC1479 (Project ID 44189134), the SFB/TRR359 (Project ID 491676693) and by the DFG under Germany’s Excellence Strategy (Grant No. CIBSS — EXC-2189, Project ID 390939984). A.S. is supported by an Emmy Noether Research Grant (SCHL2116/1), DFG Research Grants (SCHL2116/6-1 and SCHL2116/7-1), the GRK214362475/GRK1873/2 and the DFG CRC1454 (Project INST 217/1042-1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elvira Mass.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

12-Hydroxyeicosatetraenoic acid

A pro-inflammatory eicosanoid metabolite produced by cells.

Erythroblastic island

(EBI). A cluster of developing red blood cells forming around a central macrophage that supports their maturation.

Hepatic stellate cells

Also known as vitamin A and lipid-storing cells, located between the endothelial lining and hepatocytes contributing to liver homeostasis via autocrine, paracrine and chemoattractant factors.

Hofbauer cells

Placental macrophages that are present throughout pregnancy.

Human Cell Atlas

A large-scale, international effort aimed at mapping the diversity and distribution of cells in the human body.

Kolmer epiplexus cells

Intraventricular tissue-resident macrophage population associated with the multiciliated cuboid ependymal cells of the choroid plexus in all ventricles.

Type II airway epithelial cells

Specialized cells in the respiratory system responsible for the production of surfactant.

Virchow-Robin/perivascular space

Space surrounding blood vessels within tissues, filled with perivascular cells and the extracellular fluid.

Wildlings

C57BL/6 mice that are colonized by natural microbiota and pathogens at all body sites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mass, E., Nimmerjahn, F., Kierdorf, K. et al. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 23, 563–579 (2023). https://doi.org/10.1038/s41577-023-00848-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00848-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing