Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macrophages in atherosclerosis: a dynamic balance

Key Points

  • Macrophages are key integrators of inflammatory and metabolic signals in atherosclerotic plaques.

  • The macrophage content of the plaque and the activation state of the macrophages changes during both the progression and the regression of atherosclerosis.

  • The macrophage content of the plaque represents the kinetic balance between the recruitment of blood monocytes, their differentiation into tissue macrophages and proliferation in situ, and their emigration or death.

  • The lipid content of macrophages promotes innate immune responses and inflammation both by increasing the sensitivity of Toll-like receptors to their ligands and by activating the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome.

  • The study of new mouse models of atherosclerosis regression has established the reversibility of macrophage accumulation and activation in plaques, which challenges the long-held belief that failing to resolve chronic inflammation is an inevitable feature of atherosclerosis.

Abstract

Atherosclerosis is a chronic inflammatory disease that arises from an imbalance in lipid metabolism and a maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Through the analysis of the progression and regression of atherosclerosis in animal models, there is a growing understanding that the balance of macrophages in the plaque is dynamic and that both macrophage numbers and the inflammatory phenotype influence plaque fate. In this Review, we summarize recently identified pro- and anti-inflammatory pathways that link lipid and inflammation biology with the retention of macrophages in plaques, as well as factors that have the potential to promote their egress from these sites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms regulating monocyte recruitment and accumulation in plaques.
Figure 2: Mechanisms controlling macrophage lipoprotein uptake and efflux.
Figure 3: Pathways regulating macrophage retention and emigration in plaques.

Similar content being viewed by others

References

  1. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Randolph, G. J. Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Curr. Opin. Lipidol. 19, 462–468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Feig, J. E. et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123, 989–998 (2011). This study describes the use of Reversa mice as a model of atherosclerosis regression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feig, J. E. et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc. Natl Acad. Sci. USA 108, 7166–7171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004). This study shows the emigration of CD68+ cells from regressing atherosclerotic plaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Averill, L. E., Meagher, R. C. & Gerrity, R. G. Enhanced monocyte progenitor cell proliferation in bone marrow of hyperlipemic swine. Am. J. Pathol. 135, 369–377 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Feldman, D. L., Mogelesky, T. C., Liptak, B. F. & Gerrity, R. G. Leukocytosis in rabbits with diet-induced atherosclerosis. Arterioscler. Thromb. 11, 985–994 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007). This study shows that Apoe−/− mice have a monocytosis that is due to an increase in the LY6Chi monocyte population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007). This study shows that Apoe−/− mice have a monocytosis and it describes the chemokine receptors that contribute to monocyte recruitment in progressing plaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010). This study establishes the essential role of cellular cholesterol efflux in suppressing haematopoietic stem cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Glass, C. K. & Witztum, J. L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Paulson, K. E. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ. Res. 106, 383–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  Google Scholar 

  18. Soehnlein, O. et al. Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Mol. Med. 5, 471–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woollard, K. J. & Geissmann, F. Monocytes in atherosclerosis: subsets and functions. Nature Rev. Cardiol. 7, 77–86 (2010).

    Article  Google Scholar 

  20. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nature Med. 17, 1410–1422 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Combadiere, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649–1657 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunol. 7, 311–317 (2006).

    Article  CAS  Google Scholar 

  23. Landsman, L. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113, 963–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. van Gils, J. M. et al. Endothelial expression of guidance cues in vessel wall homeostasis dysregulation under proatherosclerotic conditions. Arterioscler. Thromb. Vasc. Biol. 33, 911–919 (2013). This study shows that neuronal guidance molecules are differentially expressed on the endothelium in athero-prone and athero-protected regions of the vasculature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nature Immunol. 13, 136–143 (2012). This work identifies netrin 1 as a retention signal that blocks macrophage egress from inflamed vessel walls in the presence of hypercholesterolaemia, which leads to chronic vessel wall inflammation and plaque progression.

    Article  CAS  Google Scholar 

  26. Wanschel, A. et al. Neuroimmune guidance cue semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler. Thromb. Vasc. Biol. 33, 886–893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moore, K. J. & Freeman, M. W. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702–1711 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kunjathoor, V. V. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277, 49982–49988 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Podrez, E. A., Schmitt, D., Hoff, H. F. & Hazen, S. L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 103, 1547–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kzhyshkowska, J., Neyen, C. & Gordon, S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217, 492–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Maxfield, F. R. & Tabas, I. Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kuchibhotla, S. et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res. 78, 185–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Manning-Tobin, J. J. et al. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 29, 19–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Tardif, J. C. Antioxidants: the good, the bad and the ugly. Can. J. Cardiol. 22 (Suppl. B), 61B–65B (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boyanovsky, B. B., van der Westhuyzen, D. R. & Webb, N. R. Group V secretory phospholipase A2-modified low density lipoprotein promotes foam cell formation by a SR-A- and CD36-independent process that involves cellular proteoglycans. J. Biol. Chem. 280, 32746–32752 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Oorni, K. & Kovanen, P. T. Lipoprotein modification by secretory phospholipase A2 enzymes contributes to the initiation and progression of atherosclerosis. Curr. Opin. Lipidol. 20, 421–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lind, L. et al. Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. Eur. Heart J. 33, 2946–2954 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Kugiyama, K. et al. Circulating levels of secretory type II phospholipase A2 predict coronary events in patients with coronary artery disease. Circulation 100, 1280–1284 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Kruth, H. S. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr. Opin. Lipidol. 22, 386–393 (2011). This is a discussion of studies that establish that native LDL can contribute to foam cell formation through its uptake via macrophage fluid-phase pinocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, X. et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51, 3196–3206 (2010). This study shows that cholesterol enrichment of lipid rafts promotes signalling via TLRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mogilenko, D. A. et al. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J. 26, 2019–2030 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Yvan-Charvet, L. et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118, 1837–1847 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jerome, W. G. Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. Rejuven. Res. 9, 245–255 (2006).

    Article  CAS  Google Scholar 

  45. Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol. 5, 781–792 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yvan-Charvet, L., Wang, N. & Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 30, 139–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature Rev. Mol. Cell Biol. 13, 213–224 (2012).

    Article  CAS  Google Scholar 

  50. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009). This study was the first to show a role for autophagy in regulating lipid metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell. Metab. 13, 655–667 (2011). This study shows that autophagy regulates cholesterol efflux in macrophage foam cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao, X. et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell. Metab. 15, 545–553 (2012). This study uncovers a protective role for the autophagy process in atherosclerosis through the regulation of plaque necrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Razani, B. et al. Autophagy links inflammasomes to atherosclerotic progression. Cell. Metab. 15, 534–544 (2012). This study shows a protective role for the autophagy process in atherosclerosis through the regulation of inflammasome activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunol. 12, 222–230 (2011).

    Article  CAS  Google Scholar 

  55. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010). This study describes a role for the NLRP3 inflammasome in atherogenesis, thereby uncovering a previously unappreciated role of cholesterol crystals as key early initiators of vascular inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lim, R. S. et al. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J. Lipid Res. 52, 2177–2186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gage, J., Hasu, M., Thabet, M. & Whitman, S. C. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can. J. Cardiol. 28, 222–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Usui, F. et al. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun. 425, 162–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  61. Freigang, S. et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 41, 2040–2051 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Menu, P. et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sheedy, F. J. et al. CD36 coordinates activation of the NLRP3 inflammasome by facilitating the intracellular nucleation of soluble to particulate ligands in sterile inflammation. Nature Immunol. 14, 812–820 (2013).

    Article  CAS  Google Scholar 

  64. Niemi, K. et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J. Immunol. 186, 6119–6128 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mullick, A. E., Tobias, P. S. & Curtiss, L. K. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115, 3149–3156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol. 11, 155–161 (2010). This study identifies a new TLR heterodimer, TLR4–TLR6, that is triggered by oxidized LDL through CD36 and that promotes pro-inflammatory signalling in macrophages.

    Article  CAS  Google Scholar 

  68. Ding, Y. et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 1596–1604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, T. W. et al. The critical role of IL-1 receptor-associated kinase 4-mediated NF-κB activation in modified low-density lipoprotein-induced inflammatory gene expression and atherosclerosis. J. Immunol. 186, 2871–2880 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Rekhter, M. et al. Genetic ablation of IRAK4 kinase activity inhibits vascular lesion formation. Biochem. Biophys. Res. Commun. 367, 642–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Lutgens, E. et al. Deficient CD40–TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med. 207, 391–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Richards, M. R. et al. The LPS2 mutation in TRIF is atheroprotective in hyperlipidemic low density lipoprotein receptor knockout mice. Innate Immun. 19, 20–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Med. 10, 416–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bae, Y. S. et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res. 104, 210–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Seimon, T. A. et al. Atherogenic lipids and lipoproteins trigger CD36–TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell. Metab. 12, 467–482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adamson, S. & Leitinger, N. Phenotypic modulation of macrophages in response to plaque lipids. Curr. Opin. Lipidol. 22, 335–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res. 108, 985–995 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gallardo-Soler, A. et al. Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity. Mol. Endocrinol. 22, 1394–1402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 107, 737–746 (2010). This study identifies a new macrophage phenotype, termed the Mox macrophage, that occurs in macrophages that have been exposed to atherogenic phospholipids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nature Immunol. 12, 204–212 (2011).

    Article  CAS  Google Scholar 

  82. Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C monocytes. Nature Immunol. 12, 778–785 (2011). This study identifies an important role for NR4A1 in M2 macrophage polarization.

    Article  CAS  Google Scholar 

  83. Hanna, R. N. et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110, 416–427 (2012). This study reports that the deletion of NR4A1 worsens atherosclerosis by increasing macrophage polarization to the M1 phenotype.

    Article  CAS  PubMed  Google Scholar 

  84. Hamers, A. A. et al. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ. Res. 110, 428–438 (2012). This study reports that deletion of NR4A1 worsens atherosclerosis and inflammation.

    Article  CAS  PubMed  Google Scholar 

  85. Chao, L. C. et al. Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice. J. Lipid Res. 54, 806–815 (2013). In contrast to references 83 and 84, this study finds no role for NR4A1 in macrophage polarization or atherogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liao, X. et al. Krüppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011). This study identifies a key role for the transcription factor KLF4 in directing M2 macrophage polarization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sharma, N. et al. Myeloid Krüppel-like factor 4 deficiency augments atherogenesis in ApoE−/− mice — brief report. Arterioscler. Thromb. Vasc. Biol. 32, 2836–2838 (2012). This study shows that the deletion of KLF4 leads to enhanced atherosclerosis in both chow-fed and Western diet-fed Apoe−/− mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khallou-Laschet, J. et al. Macrophage plasticity in experimental atherosclerosis. PLoS ONE 5, e8852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, M. Z. et al. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Invest. 122, 4519–4532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhu, S. N., Chen, M., Jongstra-Bilen, J. & Cybulsky, M. I. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J. Exp. Med. 206, 2141–2149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gerrity, R. G. & Naito, H. K. Lipid clearance from fatty streak lesions by foam cell migration. Artery 8, 215–219 (1980).

    CAS  PubMed  Google Scholar 

  95. Ramkhelawon, B. et al. Hypoxia induces netrin-1 and unc5b in atherosclerotic plaques: mechanism for macrophage retention and survival. Arterioscler Thromb. Vasc. Biol. 33, 1180–1188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parathath, S. et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ. Res. 109, 1141–1152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feig, J. E. et al. Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS ONE 7, e39790 (2012). Through transcriptome analysis of macrophages in progressing and regressing plaques, this work identifies the genetic signature of macrophages during the resolution of atherosclerotic inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Trogan, E. et al. Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA 99, 2234–2239 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Potteaux, S. et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J. Clin. Invest. 121, 2025–2036 (2011). In this model of atherosclerosis regression, which was achieved through the reconstitution of Apoe−/− mice with APOE, the authors show that reduced monocyte recruitment and increased apoptotic turnover of macrophages are crucial components of atherosclerosis resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell. Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Raffai, R. L. & Weisgraber, K. H. Hypomorphic apolipoprotein E mice: a new model of conditional gene repair to examine apolipoprotein E-mediated metabolism. J. Biol. Chem. 277, 11064–11068 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Reis, E. D. et al. Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein E-deficient mouse in a novel transplantation model. J. Vasc. Surg. 34, 541–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Rong, J. X. et al. Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 104, 2447–2452 (2001). This study reports that atherosclerosis regression that is induced by increased HDL levels is characterized by decreasing macrophage content and increasing smooth muscle cell content.

    Article  CAS  PubMed  Google Scholar 

  105. Feig, J. E. et al. Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS ONE 6, e28534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Frias, J. C., Ma, Y., Williams, K. J., Fayad, Z. A. & Fisher, E. A. Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett. 6, 2220–2224 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotech. 29, 1005–1010 (2011).

    Article  CAS  Google Scholar 

  108. Pan, H. et al. Programmable nanoparticle functionalization for in vivo targeting. FASEB J. 27, 255–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Egawa, M. et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38, 570–580 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Denney, L. et al. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J. Immunol. 189, 551–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Schrijvers, D. M., De Meyer, G. R. & Martinet, W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler. Thromb. Vasc. Biol. 31, 2787–2791 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol. 189, 3508–3520 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, S. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Med. http://dx.doi.org/10.1038/nm.3258 (2013).

Download references

Acknowledgements

The work carried out in the authors' laboratories related to this Review is supported by the US National Institutes of Health (grants R01 HL084312 and P01 HL098055 to E.A.F.; and grants R01 R01HL117334 and R01HL108182 to K.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathryn J. Moore or Edward A. Fisher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Foam cells

Macrophages in the arterial wall that ingest oxidized low-density lipoprotein and assume a foamy appearance. These cells secrete various substances that are involved in plaque growth.

Myocardial infarction

An episode of acute cardiac ischaemia that leads to death of heart muscle cells. It is usually caused by a thrombotic atherosclerotic plaque.

Atherosclerosis regression

A decrease in atherosclerotic plaque size that is typically accompanied by a reduction in lipid levels, immune cells and inflammatory gene expression.

Leukocyte adhesion cascade

The key steps that are involved in leukocyte adhesion to the endothelium. These include rolling (which is mediated by selectins), activation (which is mediated by chemokines) and arrest (which is mediated by integrins). Recent additional steps have been defined that include capture (also known as tethering), slow rolling, adhesion strengthening and spreading, intravascular crawling, and paracellular and transcellular transmigration.

Firm adhesion

The interactions of rolling leukocytes with chemokines or lipid mediators, such as leukotriene B4, at the endothelial surface leads to the activation of leukocyte integrins — another family of adhesion molecules. After they are activated, integrins mediate the high-affinity adhesive interactions between leukocytes and endothelial cells, which results in the arrest and firm adhesion of rolling leukocytes.

Pattern recognition receptors

(PRRs). Host receptors (such as Toll-like receptors) that can sense pathogen-associated or damage-associated molecular patterns and that can initiate signalling cascades (which involve activation of nuclear factor-κB) that lead to an innate immune response.

Pinocytosis

Also known as fluid-phase endocytosis. A process of engulfment of extracellular fluid and its solutes. It can be mediated by an actin-dependent mechanism that results in the engulfment of large volumes (macropinocytosis) or by other mechanisms that result in the engulfment of smaller volumes (micropinocytosis).

Efferocytosis

The process of macrophage clearance of apoptotic cells.

ATP-binding cassette subfamily A member 1

(ABCA1). A member of a superfamily of proteins that transport various molecules across extracellular and intracellular membranes using the energy of ATP hydrolysis. Eukaryotic ABC genes are classified in seven families, from ABCA to ABCG, on the basis of gene organization and primary sequence homology. Functional characterization can be partly made by differential sensitivity to inhibitory drugs.

Autophagy

An evolutionarily conserved process in which acidic double-membrane vacuoles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation, through fusion to secondary lysosomes.

NLRP3 inflammasome

A molecular complex containing NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and the adaptor molecule ASC that controls the activity of caspase 1. Formation of this complex results in the cleavage of the highly pro-inflammatory cytokines pro-interleukin-1β (IL-1β) and pro-IL-18, thereby producing active IL-1β and IL-18.

M1 macrophages

Macrophages that are activated by Toll-like receptor ligands (such as lipopolysaccharide) and interferon-γ and that express, among others, inducible nitric oxide synthase and nitric oxide.

M2 macrophages

Macrophages that are stimulated by interleukin-4 (IL-4) or IL-13 and that express arginase 1, the mannose receptor 1 (also known as CD206) and the IL-4 receptor α-chain.

MicroRNA

A single-stranded RNA molecule of approximately 21–23 nucleotides in length that regulates the expression of other genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, K., Sheedy, F. & Fisher, E. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13, 709–721 (2013). https://doi.org/10.1038/nri3520

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing