Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

From tissue turnover to the cell of origin for pancreatic cancer

Abstract

The identity of the cell of origin for pancreatic ductal adenocarcinoma (PDAC) has long been debated. PDAC has a ductal morphology, but there is no formal proof that it originates from the ductal compartment. Targeting Kras expression to adult acinar or endocrine lineages induces the formation of tumors reminiscent of human PDAC, but only in the presence of concomitant inflammation. Apart from cells of the Pdx1-positive lineage in the adult pancreas, which can be transformed (albeit with low frequency), the cells susceptible to acquiring or retaining oncogenic mutations remain elusive. Hypothetically, a subset of cells that renew the adult organ physiologically or regenerate it upon severe tissue damage would be more susceptible to oncogenic transformation than mature, differentiated cells. Such a compartment could consist of putative pancreatic stem cells, progenitor cells, facultative stem cells or transdifferentiated bone marrow cells. An integrated approach combining techniques from stem cell and cancer biology will be necessary to define and map these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current hypotheses that explain tissue turnover in the adult pancreas.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Habbe, N. et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc. Natl Acad. Sci. USA 105, 18913–18918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morris, J. P. T., Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest. 120, 508–520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Kopp, J. L. et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perez-Caro, M. et al. Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J. 28, 8–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fuchs, E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Smukler, S. R. et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8, 281–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Rovira, M. et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc. Natl Acad. Sci. USA 107, 75–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Stanger, B. Z., Tanaka, A. J. & Melton, D. A. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445, 886–891 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Strobel, O. et al. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 133, 1999–2009 (2007).

    Article  PubMed  Google Scholar 

  23. Desai, B. M. et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J. Clin. Invest. 117, 971–977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yanger, K. & Stanger, B. Z. Facultative stem cells in liver and pancreas: fact and fancy. Dev. Dyn. 240, 521–529 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thorel, F. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Theise, N. D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Ianus, A., Holz, G. G., Theise, N. D. & Hussain, M. A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lechner, A. et al. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53, 616–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Milyavsky, M. et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7, 186–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sharpless, N. E. & DePinho, R. A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Morton, J. P. et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc. Natl Acad. Sci. USA 107, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Pinho, A. V., Rooman, I. & Real, F. X. p53-dependent regulation of growth, epithelial–mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 10, 1312–1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Goggins, M. et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56, 5360–5364 (1996).

    CAS  PubMed  Google Scholar 

  40. Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701–704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Penninger, J. M. & Woodgett, J. Stem cells. PTEN–coupling tumor suppression to stem cells? Science 294, 2116–2118 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Stanger, B. Z. et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8, 185–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Means, A. L. et al. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology 124, 1020–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Wagner, M., Luhrs, H., Kloppel, G., Adler, G. & Schmid, R. M. Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 115, 1254–1262 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Miyatsuka, T. et al. Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation. Genes Dev. 20, 1435–1440 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Strobel, O. et al. Beta cell transdifferentiation does not contribute to preneoplastic/metaplastic ductal lesions of the pancreas by genetic lineage tracing in vivo. Proc. Natl Acad. Sci. USA 104, 4419–4424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hill, R. et al. PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res. 70, 7114–7124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, X., Ehdaie, B., Ohara, N., Yoshino, T. & Deng, C. X. Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice. Oncogene 29, 674–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sato, N. et al. STK11/LKB1 Peutz–Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am. J. Pathol. 159, 2017–2022 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hezel, A. F. et al. Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol. Cell Biol. 28, 2414–2425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morton, J. P. et al. LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139, 586–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Su, G. H. et al. Germline and somatic mutations of the STK11/LKB1 Peutz–Jeghers gene in pancreatic and biliary cancers. Am. J. Pathol. 154, 1835–1840 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, S. K. et al. Metformin sensitizes insulin signaling through AMPK-mediated PTEN down-regulation in preadipocyte 3T3-L1 cells. J. Cell Biochem. 112, 1259–1267 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Khasawneh, J. et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc. Natl Acad. Sci. USA 106, 3354–3359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B. Kong, C. W. Michalski, M. Erkan, H. Friess and J. Kleeff reviewed the literature and drafted the manuscript. All authors approved the final version of the paper.

Corresponding author

Correspondence to Christoph W. Michalski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, B., Michalski, C., Erkan, M. et al. From tissue turnover to the cell of origin for pancreatic cancer. Nat Rev Gastroenterol Hepatol 8, 467–472 (2011). https://doi.org/10.1038/nrgastro.2011.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.114

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer