Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide, and is commonly associated with the metabolic syndrome. Secular trends in the prevalence of these diseases may be associated with the increased fructose consumption observed in the Western diet. NAFLD is characterized by two steps of liver injury: intrahepatic lipid accumulation (hepatic steatosis), and inflammatory progression to nonalcoholic steatohepatitis (NASH) (the 'two-hit' theory). In the first 'hit', hepatic metabolism of fructose promotes de novo lipogenesis and intrahepatic lipid, inhibition of mitochondrial β-oxidation of long-chain fatty acids, triglyceride formation and steatosis, hepatic and skeletal muscle insulin resistance, and hyperglycemia. In the second 'hit', owing to the molecular instability of its five-membered furanose ring, fructose promotes protein fructosylation and formation of reactive oxygen species (ROS), which require quenching by hepatic antioxidants. Many patients with NASH also have micronutrient deficiencies and do not have enough antioxidant capacity to prevent synthesis of ROS, resulting in necroinflammation. We postulate that excessive dietary fructose consumption may underlie the development of NAFLD and the metabolic syndrome. Furthermore, we postulate that NAFLD and alcoholic fatty liver disease share the same pathogenesis.

Key Points

  • Nonalcoholic fatty liver disease (NAFLD) is commonly associated with the metabolic syndrome

  • NAFLD can progress from a benign form (hepatic steatosis) to a more extreme form (nonalcoholic steatoheaptitis)

  • Secular trends in fructose consumption coincide with those of NAFLD and the metabolic syndrome; fructose is implicated in the pathogenesis of both NAFLD and the metabolic syndrome

  • Hepatic fructose metabolism is reminiscent of that of ethanol; NAFLD and alcoholic fatty liver disease are similar diseases

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of hepatic lipid metabolism.
Figure 2: Hepatic fructose metabolism.
Figure 3: Association between sugar-sweetened beverage consumption and serum alanine aminotransferase in a population of children seeking obesity treatment at the University of California, San Francisco.164
Figure 4: Molecular renditions of glucose and fructose.
Figure 5: Generation of reactive oxygen species by fructose or ethanol.

References

  1. Adams, L. A. & Lindor, K. D. Nonalcoholic fatty liver disease. Ann. Epidemiol. 17, 863–869 (2007).

    Article  PubMed  Google Scholar 

  2. Ludwig, J., Viggiano, T. R., McGill, D. B. & Ott, B. J. Nonalcoholic steatohepatitis: Mayo clinic experience with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    CAS  PubMed  Google Scholar 

  3. Moran, J. R., Ghishan, F. K., Halter, S. A. & Greene, H. L. Steatohepatitis in obese children: a cause of chronic liver dysfunction. Am. J. Gastroenterol. 78, 374–377 (1983).

    CAS  PubMed  Google Scholar 

  4. Roberts, E. A. Pediatric nonalcoholic fatty liver disease (NAFLD): a “growing” problem? J. Hepatol. 46, 1133–1142 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Unger, R. H., Clark, G. O., Scherer, P. E. & Orci, L. Lipid homeostasis, lipotoxicity, and the metabolic syndrome. Biochim. Biophys. Acta 1801, 209–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Wanless, I. R. & Lentz, J. S. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12, 1106–1110 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Kahn, C. R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066–1084 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Javor, E. D. et al. Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy. Hepatology 41, 753–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Seppala-Lindroos, A. et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87, 3023–3028 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Marchesini, G. et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am. J. Med. 107, 450–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Marchesini, G. et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37, 917–923 (2003).

    Article  PubMed  Google Scholar 

  12. Schwimmer, J. B. et al. Prevalence of fatty liver in children and adolescents. Pediatrics 118, 1388–1393 (2006).

    Article  PubMed  Google Scholar 

  13. Deivanayagam, S. et al. Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescents. Am. J. Clin. Nutr. 88, 257–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Le, K. A. & Bortolotti, M. Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 11, 477–482 (2009).

    Article  CAS  Google Scholar 

  15. Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl Acad. Sci. USA 106, 15430–15435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan, J. G. et al. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J. Gastroenterol. Hepatol. 22, 1086–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Musso, G. et al. Should nonalcoholic fatty liver disease be included in the definition of metabolic syndrome? A cross-sectional comparison with Adult Treatment Panel III criteria in nonobese nondiabetic subjects. Diabetes Care 31, 562–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Burgert, T. S. et al. Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral fat. J. Clin. Endocrinol. Metab. 91, 4287–4294 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kotronen, A., Westerbacka, J., Bergholm, R., Pietiläinen, K. H. & Yki-Järvinen, H. Liver fat in the metabolic syndrome. J. Clin. Endocrinol. Metab. 92, 3490–3497 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Taki, K., Nishio, K., Hamajima, N. & Niwa, T. Metabolic syndrome defined by new criteria in Japanese is associated with increased liver enzymes and C-reactive protein. Nagoya J. Med. Sci. 70, 1–9 (2008).

    CAS  PubMed  Google Scholar 

  21. Bethel, M. A. et al. Metabolic syndrome and alanine aminotransferase: a global perspective from the NAVIGATOR screening population. Diabet. Med. 26, 1204–1211 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibililty to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kantartzis, K. et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58, 2616–2623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pagano, G. et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35, 367–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Schwimmer, J. B. et al. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J. Pediatr. 143, 500–505 (2005).

    Article  Google Scholar 

  26. Marra, F. & Bertolani, C. Adipokines in liver diseases. Hepatology 50, 957–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Jimba, S. et al. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet. Med. 22, 1141–1145 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zivkovic, A. M., German, J. B. & Sanyal, A. J. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 86, 285–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cave, M. et al. Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J. Nutr. Biochem. 18, 184–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Alkouri, N., Dixon, L. J. & Feldstein, A. E. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 3, 445–451 (2009).

    Article  Google Scholar 

  31. Tetri, L. H., Basaranoglu, M., Brunt, E. M., Yerian, L. M. & Neuschwander-Tetri, B. A. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G987–G995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagao, K., Inoue, N., Wang, Y. M., Shirouchi, B. & Yanagita, T. Dietary conjugated linoleic acid alleviates nonalcoholic fatty liver disease in Zucker (fa/fa) rats. J. Nutr. 135, 9–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Assy, N., Nassar, F., Nasser, G. & Grosovski, M. Olive oil consumption and non-alcoholic fatty liver disease. World J. Gastroenterol. 15, 1809–1815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cussons, A. J., Watts, G. F., Mori, T. A. & Stuckey, B. G. Omega-3 fatty acid supplementation decreases liver fat content in polycystic ovary syndrome: a randomized controlled trial employing proton magnetic resonance spectroscopy. J. Clin. Endocrinol. Metab. 94, 3842–3848 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Zandbergen, F. & Plutzky, J. PPARalpha in atherosclerosis and inflammation. Biochim. Biophys. Acta 1771, 972–982 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Assy, N. et al. Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can. J. Gastroenterol. 22, 811–816 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abid, A. et al. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J. Hepatol. 51, 918–924 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Ouyang, X. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 48, 993–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thuy, S. et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J. Nutr. 138, 1452–1455 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Dhingra, R. et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 116, 480–488 (2007).

    Article  PubMed  Google Scholar 

  41. James, O. F. & Day, C. P. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. J. Hepatol. 29, 495–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Lieber, C. S. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 34, 9–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Burt, A. D., Mutton, A. & Day, C. P. Diagnosis and interpretation of steatosis and steatohepatitis. Semin. Diagn. Pathol. 15, 246–258 (1998).

    CAS  PubMed  Google Scholar 

  44. Syn, W. K., Choi, S. S. & Diehl, A. M. Apoptosis and cytokines in non-alcoholic steatohepatitis. Clin. Liver Dis. 13, 565–580 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brunt, E. M. Histopathology of non-alcoholic fatty liver disease. Clin. Liver Dis. 13, 533–544 (2009).

    Article  PubMed  Google Scholar 

  46. Patton, H. M. et al. Pediatric nonalcoholic fatty liver disease: a critical appraisal of current data and implications for future research. J. Pediatr. Gastroenterol. Nutr. 43, 413–427 (2006).

    Article  PubMed  Google Scholar 

  47. Bradbury, M. W. & Berk, P. D. Lipid metabolism in hepatic steatosis. Clin. Liver Dis. 8, 639–671 (2004).

    Article  PubMed  Google Scholar 

  48. Koteish, A. & Diehl, A. M. Animal models of steatosis. Semin. Liver Dis. 21, 89–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lieber, C. S. et al. Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr. 79, 502–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Romestaing, C. et al. Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr. Metab. (Lond.) 4, 4 (2007).

    Article  CAS  Google Scholar 

  51. Westerbacka, J. et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J. Clin. Endocrinol. Metab. 90, 2804–2809 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. York, L. W., Puthalapattu, S. & Wu, G. Y. Nonalcoholic fatty liver disease and low-carbohydrate diets. Ann. Rev. Nutr. 29, 365–379 (2009).

    Article  CAS  Google Scholar 

  54. Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roden, M. Mechanisms of disease: hepatic steatosis in type 2 diabetes-pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2, 335–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Shoelson, S. E., Lee, J. & Yuan, M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27 (Suppl. 3), S49–S52 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Memon, R. A., Feingold, K. R., Moser, A. H., Fuller, J. & Grunfeld, C. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am. J. Physiol. 274, E210–E217 (1998).

    CAS  PubMed  Google Scholar 

  58. Ravikumar, B. et al. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 288, E789–E797 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Perseghin, G. et al. Reduced intrahepatic fat content is associated with increased whole-body lipid oxidation in patients with type 1 diabetes. Diabetologia 48, 2615–2621 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Schwarz, J. M., Neese, R. A., Turner, S., Dare, D. & Hellerstein, M. K. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J. Clin. Invest. 96, 2735–2743 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aarsland, A., Chinkes, D. & Wolfe, R. R. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J. Clin. Invest. 98, 2008–2017 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hudgins, L. C. et al. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res. 41, 595–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Williams, C. D., Oxon, B. M. & Lond, H. Kwashiorkor: a nutritional disease of children associated with a maize diet. 1935. Bull. World Health Organ. 81, 912–913 (2003).

    PubMed  Google Scholar 

  64. Doherty, J. F., Adam, E. J., Griffin, G. E. & Golden, M. H. Ultrasonographic assessment of the extent of hepatic steatosis in severe malnutrition. Arch. Dis. Child. 67, 1348–1352 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shimomura, I., Bashmakov, Y. & Horton, J. D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 274, 30028–30032 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Araya, J. et al. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. (Lond.) 106, 635–643 (2004).

    Article  CAS  Google Scholar 

  67. Leitch, C. A. & Jones, P. J. Measurement of human lipogenesis using deuterium incorporation. J. Lipid Res. 34, 157–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Hellerstein, M. K. et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J. Clin. Invest. 87, 1841–1852 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schwarz, J. M., Linfoot, P., Dare, D. & Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Glasgow, J. F., Middleton, B., Moore, R., Gray, A. & Hill, J. The mechanism of inhibition of beta-oxidation by aspirin metabolites in skin fibroblasts from Reye's syndrome patients and controls. Biochim. Biophys. Acta 1454, 115–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Spiekerkoetter, U., Sun, B., Khuchua, Z., Bennett, M. J. & Strauss, A. W. Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein de-ficiency due to beta-subunit mutations. Hum. Mutat. 21, 598–607 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Barr, R., Glass, I. H. & Chawla, G. S. Reye's syndrome: massive fatty metamorphosis of the liver with acute encephalopathy. Can. Med. Assoc. J. 98, 1038–1044 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schreurs, M., Kuipers, F. & van der Leij, F. R. Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obes. Rev. doi:10.1111/j.1467-789X.2009.00642.x.

    Article  CAS  PubMed  Google Scholar 

  74. McGarry, J. D. & Brown, N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244, 1–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Savage, D. B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116, 817–824 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pessayre, D. Role of mitochondria in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 22, S20–S27 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kotronen, A. et al. Liver fat and lipid oxidation in humans. Liver Int. 29, 1439–1446 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Auten, R. & Davis, J. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr. Res. 66, 121–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Charlton, M., Sreekumar, R., Rasmussen, D., Lindor, K. & Nair, K. S. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology 35, 898–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Berriot-Varoqueaux, N., Aggerbeck, L. P., Samson-Bouma, M. & Wetterau, J. R. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr. 20, 663–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. [No auhtors listed] Trends in intake of energy and macronutrients--United States, 1971–2000. MMWR Morb. Mortal. Wkly Rep. 53, 80–82 (2004).

  82. Chanmugam, P. et al. Did fat intake in the United States really decline between 1989–1991 and 1994–1996? J. Am. Diet. Assoc. 103, 867–872 (2003).

    Article  PubMed  Google Scholar 

  83. Larter, C. Z. & Yeh, M. M. Animal models of NASH: getting both pathology and metabolic context right. J. Gastroenterol. Hepatol. 23, 1635–1648 (2008).

    Article  PubMed  Google Scholar 

  84. Stern, L. et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann. Intern. Med. 140, 778–785 (2004).

    Article  PubMed  Google Scholar 

  85. Samaha, F. F. et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N. Engl. J. Med. 348, 2074–2081 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 359, 229–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Rasooly, R., Kelley, D. S., Greg, J. & Mackey, B. E. Dietary trans 10, cis 12-conjugated linoleic acid reduces the expression of fatty acid oxidation and drug detoxification enzymes in mouse liver. Br. J. Nutr. 97, 58–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, S. et al. Trends in diet quality for coronary heart disease prevention between 1980–1982 and 2000–2002: The Minnesota Heart Survey. J. Am. Diet. Assoc. 107, 213–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. European Commission. Welfare aspects of the production of foie gras in ducks and geese [online], Ch. 4, 24–29 (2002).

  90. Pasquet, P. et al. Massive overfeeding and energy balance in men: the Guru Walla model. Am. J. Clin. Nutr. 56, 483–490 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Toshimitsu, K. et al. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 23, 46–52 (2007).

    Article  PubMed  Google Scholar 

  92. Vos, M. B., Kimmons, J. E., Gillespie, C., Welsh, J. & Blanck, H. M. Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Medscape J. Med. 10, 160 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Bray, G. A. How bad is fructose? Am. J. Clin. Nutr. 86, 895–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Haley, S., Reed, J., Lin, B.-H. & Cook, A. Sweetner Consumption in the United States: Distribution by Demographic and Product Characteristics. Economic Research Service [online], (2005).

    Google Scholar 

  95. Ludwig, D. S., Peterson, K. E. & Gortmaker, S. L. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 357, 505–508 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Warner, M. L., Harley, K., Bradman, A., Vargas, G. & Eskenazi, B. Soda consumption and overweight status of 2-year-old Mexican-American children in California. Obesity 14, 1966–1974 (2006).

    Article  PubMed  Google Scholar 

  97. Faith, M. S., Dennison, B. A., Edmunds, L. S. & Stratton, H. H. Fruit juice intake predicts increased adiposity gain in children from low-income families: weight status-by-environment interaction. Pediatrics 118, 2066–2075 (2006).

    Article  PubMed  Google Scholar 

  98. Le, K. A. & Tappy, L. Metabolic effects of fructose. Curr. Opin. Nutr. Metab. Care 9, 469–475 (2006).

    Article  CAS  Google Scholar 

  99. Rutledge, A. C. & Adeli, K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr. Rev. 65, S13–S23 (2007).

    Article  PubMed  Google Scholar 

  100. Johnson, R. J. et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 86, 899–906 (2007).

    CAS  PubMed  Google Scholar 

  101. Havel, P. J. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev. 63, 133–157 (2005).

    Article  PubMed  Google Scholar 

  102. Gross, L. S., Li, S., Ford, E. S. & Liu, S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am. J. Clin. Nutr. 79, 774–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K. & Havel, P. J. Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr. 76, 911–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Brown, C. M., Dulloo, A. G. & Montani, J. P. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. Int. J. Obes. 32, 528–534 (2008).

    Article  CAS  Google Scholar 

  105. Spruss, A. & Bergheim, I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J. Nutr. Biochem. 20, 657–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Collison, K. S. et al. Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55. Obesity 17, 2003–2013 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Lê, K. A. et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 89, 1760–1765 (2009).

    Article  PubMed  CAS  Google Scholar 

  108. Drouard, V. & Ferraris, R. P. Regulation of the fructose transporter Glut5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295, E227–E237 (2008).

    Article  CAS  Google Scholar 

  109. Wood, I. S., Wang, B., Lorente-Cebrián, S. & Trayhurn, P. Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes. Biochem. Biophys. Res. Comm. 361, 468–473 (2007).

    Article  PubMed  CAS  Google Scholar 

  110. Lustig, R. H. The fructose epidemic. The Bariatrician 24, 10–19 (2009).

    Google Scholar 

  111. Nguyen, S., Choi, H. K., Lustig, R. H. & Hsu, C. Y. Sugar sweetened beverages, serum uric acid, and blood pressure in adolescents J. Pediatr. 154, 807–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gao, X. B. et al. Intake of added sugar and sugar-sweetended drink and serum uric acid concentration in U. S. men and women. Hypertension 50, 306–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Feig, D. I., Soletsky, B. & Johnson, R. J. Effects of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension. JAMA 300, 924–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Perez-Pozo, S. E. et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int. J. Obes. doi:10.1038/ijo.2009.259.

    Article  PubMed  CAS  Google Scholar 

  115. Stanhope, K. L. et al. Consuming fructose-, not glucose-sweetened beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei, Y., Wang, D. & Pagliassotti, M. J. Fructose selectively modulates c-jun N-terminal kinase activity and insulin signaling in rat primary hepatocytes. J. Nutr. 135, 1642–1646 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Wei, Y., Wang, D., Topczewski, F. & Pagliassotti, M. J. Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. J. Nutr. Biochem. 18, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Morino, K., Petersen, K. F. & Shulman, G. I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55, S9–S15 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Bezerra, R. M. N. et al. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J. Nutr. 130, 1531–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Wei, Y. & Pagliassotti, M. J. Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 287, E926–E933 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 103, 10741–10746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lim, J. H., Lee, H. J., Jung, M. H. & Song, J. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell. Signal. 21, 169–177 (2008).

    Article  PubMed  CAS  Google Scholar 

  124. Teff, K. L. et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 94, 1562–1569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Krssak, M. et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42, 113–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Montell, E. et al. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am. J. Physiol. Endocrinol. Metab. 280, E229–E237 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Dong, X. C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lindqvist, A., Baelemans, A. & Erlanson-Albertsson, C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regul. Pept. 150, 26–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Avena, N. M., Rada, P. & Hoebel, B. G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 32, 20–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Teff, K. L. et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab. 89, 2963–2972 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Cha, S. H., Wolfgang, M., Tokutake, Y., Chohnan, S. & Lane, M. D. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc. Natl Acad. Sci. USA 105, 16871–16875 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Banks, W. A. et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53, 1253–1260 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Lustig, R. H. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the first law of thermodynamics. Nat. Clin. Pract. Endocrinol. Metab. 2, 447–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Sabaté, J. M. et al. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes. Surg. 18, 371–377 (2008).

    Article  PubMed  Google Scholar 

  135. Rao, R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 50, 638–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Faeh, D. et al. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54, 1907–1913 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Scott, C. C., Heckman, C. A. & Snyder, F. Regulation of ether lipids and their precursors in relation to glycolysis in cultured neoplastic cells. Biochim. Biophys. Acta 575, 215–224 (1979).

    Article  CAS  PubMed  Google Scholar 

  138. Dentin, R. et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159–2170 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Zivkovic, A. M., German, J. B. & Sanyal, A. J. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 86, 285–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Nagai, Y. et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 9, 252–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Siler, S. Q., Neese, R. A. & Hellerstein, M. K. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am. J. Clin. Nutr. 70, 928–936 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. You, M. & Crabb, D. W. Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol 34, 39–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Nagai, Y. et al. Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am. J. Physiol. Endocrinol. Metab. 282, E1180–E1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, D. et al. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc. Natl Acad. Sci. USA 104, 17075–17080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guzmán, M. & Castro, J. Alterations in the regulatory properties of hepatic fatty acid oxidation and carnitine palmitoyltransferase I activity after ethanol feeding and withdrawal. Alcohol Clin. Exp. Res. 14, 472–477 (1990).

    Article  PubMed  Google Scholar 

  146. Farfán Labonne, B. E. et al. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol. Toxicol. 25, 599–609 (2009).

    Article  PubMed  CAS  Google Scholar 

  147. García-Villafranca, J., Guillén, A. & Castro, J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP activated protein kinase in rat liver. Biochimie 90, 460–466 (2008).

    Article  PubMed  CAS  Google Scholar 

  148. Ameen, C. et al. Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver. J. Biol. Chem. 280, 1224–1229 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Roglans, N. et al. Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45, 778–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Nanji, A. A., Dannenberg, A. J., Jokelainen, K. & Bass, N. M. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J. Pharmacol. Exp. Ther. 310, 417–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Koo, H. Y. et al. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim. Biophys. Acta 1782, 341–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Gambino, R., Cassader, M., Pagano, G., Durazzo, M. & Musso, G. Polymorphism in microsomal triglyceride transfer protein: a link between liver disease and atherogenic postprandial lipid profile in NASH? Hepatology 45, 1097–1107 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Taghibiglou, C. et al. Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose fed hamster model of insulin resistance. J. Biol. Chem. 277, 793–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Tsai, J. et al. Inflammatory NF-kappaB activation promotes hepatic apolipoprotein B100 secretion: evidence for a link between hepatic inflammation and lipoprotein production. Am. J. Physiol. Gastrointest. Liver Physiol. 296, 1287–1298 (2009).

    Article  CAS  Google Scholar 

  155. Hirano, T., Mamo, J. C., Poapst, M. E., Kuksis, A. & Steiner, G. Impaired very low-density lipoprotein-triglyceride catabolism in acute and chronic fructose-fed rats. Am. J. Physiol. 256, E559–E565 (1989).

    CAS  PubMed  Google Scholar 

  156. Sozio, M. & Crabb, D. W. Alcohol and lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 295, E10–E16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Steinberg, D., Pearson, T. A. & Kuller, L. H. Alcohol and atherosclerosis. Ann. Intern. Med. 114, 967–976 (1991).

    Article  CAS  PubMed  Google Scholar 

  158. Svegliati-Baroni, G. et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am. J. Pathol. 169, 846–860 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lau, P. P., Cahill, D. J., Zhu, H. J. & Chan, L. Ethanol modulates apolipoprotein B mRNA editing in the rat. J. Lipid Res. 36, 2069–2078 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Haidari, M. et al. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 277, 31646–31655 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Duez, H. et al. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 26, 1357–1363 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Jurgens, H. et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes. Res. 13, 1146–1156 (2005).

    Article  PubMed  Google Scholar 

  163. Ackerman, Z. et al. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45, 1012–1018 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Valente, A., Mietus-Snyder, M. L., Lim, J. S. & Lustig, R. H. Association between sugar sweetened beverage consumption and serum alanini aminotransferase in obese children [abstract]. Ped. Acad. Soc. 3854.45 (2009).

  165. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shin, M. J., Kanaya, A. M. & Krauss, R. M. Polymorphisms in the peroxisome proliferator activated receptor alpha gene are associated with levels of apolipoprotein CIII and triglyceride in African-Americans but not Caucasians. Atherosclerosis 198, 313–319 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Wieckowska, A. & Feldstein, A. E. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin. Liver Dis. 28, 386–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Radetti, G., Kleon, W., Stuefer, J. & Pittschieler, K. Non-alcoholic fatty liver disease in obese children evaluated by magnetic resonance imaging. Acta Paediatr. 95, 833–837 (2006).

    Article  PubMed  Google Scholar 

  169. Schwarz, J. M. et al. Effects of short-term feeding with high- vs low-fructose isoenergetic diets on hepatic de novo lipogenesis, liver fat content and glucose regulation [abstract]. Am. Diabetes Assoc. 1476P (2009).

  170. Dills, W. L. Protein fructosylation: fructose and the Maillard reaction. Am. J. Clin. Nutr. 58, 779S–787S (1993).

    Article  CAS  PubMed  Google Scholar 

  171. Ahmed, N. & Furth, A. J. Failure of common glycation assays to detect glycation by fructose. Clin. Chem. 38, 1301–1303 (1992).

    Article  CAS  PubMed  Google Scholar 

  172. Schalkwijk, C. G., Stehouwer, C. D. & van Hinsbergh, V. W. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab. Res. 20, 369–382 (2004).

    Article  CAS  Google Scholar 

  173. Nagai, R. et al. Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem. Biophys. Res. Comm. 234, 167–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Bunn, H. F. & Higgins, P. J. Reaction of monosaccharides with proteins: possible evolutionary significance Science 213, 222–224 (1981).

    Article  CAS  PubMed  Google Scholar 

  175. Bose, T. & Chakraborti, A. S. Fructose-induced structural and functional modifications of hemoglobin: implication for oxidative stress in diabetes mellitus. Biochim. Biophys. Acta 1780, 800–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Levi, B. & Werman, M. J. Fructose and related phosphate derivatives impose DNA damage and apoptosis in L5178Y mouse lymphoma cells. J. Nutr. Biochem. 14, 49–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Lee, O. et al. Fructose and carbonyl metabolites and endogenous toxins. Chem. Biol. Interact. 178, 332–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Koteish, A. & Diehl, A. M. Animal models of steatohepatitis. Best Pract. Res. Clin. Gastroenterol. 16, 679–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Zeisel, S. H. Dietary choline: biochemistry, physiology, and pharmacology. Ann. Rev. Nutr. 1, 95–121 (1981).

    Article  CAS  Google Scholar 

  180. Pickens, M. K. et al. Dietary sucrose is essential to the development of liver injury in the MCD model of steatohepatitis. J. Lipid Res. 50, 2072–2082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Romestaing, C. et al. Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet. Am. J. Physiol. Endocrinol. Metab. 294, E110–E119 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Frary, C. D., Johnson, R. K. & Wang, M. Q. Children and adolescents' choices of foods and beverages high in added sugars are associated with intakes of key nutrients and food groups. J. Adol. Health 34, 56–63 (2004).

    Article  Google Scholar 

  183. Garcia, O. P., Long, K. Z. & Rosado, J. L. Impact of micronutrient deficiencies on obesity. Nutr. Rev. 67, 559–572 (2009).

    Article  PubMed  Google Scholar 

  184. Manari, A. P., Preedy, V. R. & Peters, T. J. Nutritional intake of hazardous drinkers and dependent alcoholics in the UK. Addict. Biol. 8, 201–210 (2003).

    Article  PubMed  Google Scholar 

  185. Godin, D. V. & Wohaieb, S. A. Nutritional deficiency, starvation, and tissue antioxidant status. Free Radic. Biol. Med. 5, 165–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  186. Powell, C. L. et al. Mechanism for prevention of alcohol-induced liver injury by dietary methyl donors. Toxicol. Sci. doi:10.1093/toxsci/kfq031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gentile, C. L. & Pagliassotti, M. J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J. Nutr. Biochem. 19, 567–576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Santos, C. X., Tanaka, L. Y., Wosniak, J. & Laurindo, F. R. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox Signal. 11, 2409–2427 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Kapoor, A. & Sanyal, A. J. Endoplasmic reticulum stress and the unfolded protein response. Clin. Liver Dis. 13, 581–590 (2009).

    Article  PubMed  Google Scholar 

  190. Lazo, M. & Clark, J. M. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin. Liver Dis. 28, 339–350 (2008).

    Article  PubMed  Google Scholar 

  191. Johnson, R. K. et al. Dietary sugars intake and cardiovascular health. A scientific statement from the American Heart Association. Circulation 120, 1011–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Bantle, J. P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 139, 1263S–1268S (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs S. Noworolski, P. Tsai, P. Rosenthal, N. Bass, R. Merriman, and R. Krauss for constructive input. Dr. Schwarz's laboratory is supported by an NIH–National Institute of Diabetes and Digestive and Kidney Disease grant (R01 DK078133) and an American Diabetes Association Clinical Research Award (1-08-CR-56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Lustig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Mietus-Snyder, M., Valente, A. et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7, 251–264 (2010). https://doi.org/10.1038/nrgastro.2010.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing