Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards a more comprehensive concept for prebiotics

This article has been updated

Abstract

The essential role of the gut microbiota for health has generated tremendous interest in modulating its composition and metabolic function. One of these strategies is prebiotics, which typically refer to selectively fermented nondigestible food ingredients or substances that specifically support the growth and/or activity of health-promoting bacteria that colonize the gastrointestinal tract. In this Perspective, we argue that advances in our understanding of diet–microbiome–host interactions challenge important aspects of the current concept of prebiotics, and especially the requirement for effects to be 'selective' or 'specific'. We propose to revise this concept in an effort to shift the focus towards ecological and functional features of the microbiota more likely to be relevant for host physiology. This revision would provide a more rational basis for the identification of prebiotic compounds, and a framework by which the therapeutic potential of modulating the gut microbiota could be more fully materialized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current and proposed definitions for the concept of prebiotics.

Change history

  • 23 April 2015

    In the version of this article originally published online a statement about antibiotics in relation to the 2008 FAO definition of prebiotics was incorrect in Table 1 and has now been deleted. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Britton, R. A. & Young, V. B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. 146, 1547–1553 (2014).

  4. Haag, L. M. et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS ONE 7, e35988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 9, 599–608 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox, L. M. & Blaser, M. J. Pathways in microbe-induced obesity. Cell Metab. 17, 883–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan, M. T., Nieuwdorp, M. & Backhed, F. Microbial modulation of insulin sensitivity. Cell Metab. 20, 753–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, L. The gut microbiota and obesity: from correlation to causality. Nat. Rev. Microbiol. 11, 639–647 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Delzenne, N. M., Neyrinck, A. M. & Cani, P. D. Gut microbiota and metabolic disorders: how prebiotic can work? Br. J. Nutr. 109 (Suppl. 2), S81–S85 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Tilg, H. & Moschen, A. R. Microbiota and diabetes: an evolving relationship. 63, 1513–1521 (2014).

  14. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brusca, S. B., Abramson, S. B. & Scher, J. U. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr. Opin. Rheumatol. 26, 101–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramezani, A. & Raj, D. S. The gut microbiome, kidney disease, and targeted interventions. J. Am. Soc. Nephrol. 25, 657–670 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Noval Rivas, M. et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. Allergy Clin. Immunol. 131, 201–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5, 4724 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Walker, A. W. & Lawley, T. D. Therapeutic modulation of intestinal dysbiosis. Pharmacol. Res. 69, 75–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Olle, B. Medicines from microbiota. Nat. Biotechnol. 31, 309–315 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Metchnikoff, E. The Prolongation of Life: Optimistic Studies (ed. Chalmers Mitchell, P.). (G. P. Putnam's Sons, 1908).

    Google Scholar 

  29. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104 (Suppl. 2), S1–S63 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Leach, J. D. Evolutionary perspective on dietary intake of fibre and colorectal cancer. Eur. J. Clin. Nutr. 61, 140–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Bindels, L. B. et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 107, 1337–1344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell 156, 84–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Rastall, R. A. & Gibson, G. R. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr. Opin. Biotechnol. 32C, 42–46 (2014).

    Google Scholar 

  39. Nyangale, E. P., Mottram, D. S. & Gibson, G. R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J. Proteome. Res. 11, 5573–5585 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Schrezenmeir, J. & de Vrese, M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr. 73 (2 Suppl), 361S–364S (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Reid, G. et al. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol. 37, 105–118 (2003).

    Article  PubMed  Google Scholar 

  42. Kaczmarczyk, M. M., Miller, M. J. & Freund, G. G. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 61, 1058–1066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jakobsdottir, G., Nyman, M. & Fak, F. Designing future prebiotic fiber to target metabolic syndrome. Nutrition 30, 497–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Holscher, H. D. et al. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 101, 55–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Human Microbiome Project Consortium et al. Structure, function and diversity of the healthy human microbiome, Nature 486, 207–214 (2012).

  47. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Guarner, F. Decade in review—gut microbiota: The gut microbiota era marches on. Nat. Rev. Gastroenterol. Hepatol. 11, 647–649 (2014).

    Article  PubMed  Google Scholar 

  49. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. FAO. FAO Technical Meeting on Prebiotics, Rome. Advance Analytical Technologies [online], (2008).

  52. Gibson, G. R. et al. Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin: Functional Foods 7, 1–19 (2010).

    Google Scholar 

  53. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Moran, J. P., Walter, J., Tannock, G. W., Tonkonogy, S. L. & Sartor, R. B. Bifidobacterium animalis causes extensive duodenitis and mild colonic inflammation in monoassociated interleukin-10-deficient mice. Inflamm. Bowel Dis. 15, 1022–1031 (2009).

    Article  PubMed  Google Scholar 

  58. Veiga, P. et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl Acad. Sci. USA 107, 18132–18127 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Bindels, L. B., Dewulf, E. M. & Delzenne, N. M. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol. Sci. 34, 226–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Birt, D. F. et al. Resistant starch: promise for improving human health. Adv. Nutr. 4, 587–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robertson, M. D. Dietary-resistant starch and glucose metabolism. Curr. Opin. Clin. Nutr. Metab Care 15, 362–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Gibson, G. R., Beatty, E. R., Wang, X. & Cummings, J. H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975–982 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Roberfroid, M. Prebiotics: the concept revisited. J. Nutr. 137 (3 Suppl. 2), 830S–837S (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Davis, L. M., Martinez, I., Walter, J., Goin, C. & Hutkins, R. W. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 6, e25200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ladirat, S. E. et al. Exploring the effects of galacto-oligosaccharides on the gut microbiota of healthy adults receiving amoxicillin treatment. Br. J. Nutr. 112, 536–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Maathuis, A. J., van den Heuvel, E. G., Schoterman, M. H. & Venema, K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutr. 142, 1205–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Furuse, S. U. et al. Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiol. Rep. 2, e12029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakamizo, S. et al. Commensal bacteria and cutaneous immunity. Semin. Immunopathol. 37, 73–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Maruyama, N. et al. Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci. Rep. 4, 6602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reid, G. Probiotic and prebiotic applications for vaginal health. J. AOAC Int. 95, 31–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Wade, W. G. The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cox, L. M. et al. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. FASEB J. 27, 692–702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Quintero, M. et al. Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr. Microbiol. 62, 1448–1454 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Zenhom, M. et al. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3. J. Nutr. 141, 971–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Hassaninasab, A., Hashimoto, Y., Tomita-Yokotani, K. & Kobayashi, M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc. Natl Acad. Sci. USA 108, 6615–6620 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. van Duynhoven, J. et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4531–4538 (2011).

    Article  PubMed  Google Scholar 

  89. Bolca, S., Van de Wiele, T. & Possemiers, S. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 24, 220–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Anhe, F. F. et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut http://dx.doi.org/10.1136/gutjnl-2014-307142.

  91. Neyrinck, A. M. et al. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr. 109, 802–809 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Bereswill, S. et al. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS ONE 5, e15099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, X. et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 7, e42529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sanders, M. E. et al. Health claims substantiation for probiotic and prebiotic products. Gut Microbes 2, 127–133 (2011).

    Article  PubMed  Google Scholar 

  97. Tachon, S., Zhou, J., Keenan, M., Martin, R. & Marco, M. L. The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiol. Ecol. 83, 299–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Martinez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Pacheco, A. R., Barile, D., Underwood, M. A. & Mills, D. A. The impact of the milk glycobiome on the neonate gut microbiota. Annu. Rev. Anim. Biosci. 3, 419–445 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Neyrinck, A. M. et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6, e20944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Walter, J., Martinez, I. & Rose, D. J. Holobiont nutrition: considering the role of the gastrointestinal microbiota in the health benefits of whole grains. Gut Microbes 4, 340–346 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fremont-Rahl, J. J. et al. An analysis of the role of the indigenous microbiota in cholesterol gallstone pathogenesis. PLoS ONE 8, e70657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Respondek, F. et al. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS ONE 8, e71026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hill, C. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  105. Gibson, G. R., Probert, H. M., Loo, J. V., Rastall, R. A. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259–275 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.B.B and P.D.C. are, respectively, Postdoctoral Researcher and Research Associate from the F.R.S.-FNRS (Fond National de la Recherche Scientifique, Belgium). P.D.C. is the recipient of an European Research Council Starting Grant 2013 (Starting grant 336452-ENIGMO), FNRS subsidies (credit de recherche convention J.0084.15 and convention 3.4579.11, projet de recherches T0.138.14; Fonds de la recherche scientifique, Belgium), grants from FRFS-WELBIO (WELBIO-CR-2012S-02R) and ARC (Concerted Research Activities-French Community of Belgium convention: 12/17-047). N.M.D. is the recipient of grants from the Région Wallonne (Programme d'excellence 2013, FOOD4GUT), the European Union's Seventh Framework Program (KBBE.2013.2.2-02 MyNewGut project) and the F.R.S-F.N.R.S (CDR J.0122.15). J.W. acknowledges start-up funds from the University of Alberta and thanks S. Loehr (University of Alberta, Canada) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.B.B and J.W. researched data for and wrote the article. All authors made substantial contributions to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Jens Walter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindels, L., Delzenne, N., Cani, P. et al. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12, 303–310 (2015). https://doi.org/10.1038/nrgastro.2015.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing