Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ribozymes, riboswitches and beyond: regulation of gene expression without proteins

Key Points

  • Modern organisms contain many protein-devoid RNA elements which have important roles in various cellular processes.

  • The collection of cleaving and splicing ribozymes has been recently supplemented by several eukaryotic and prokaryotic genome-encoded ribozymes that are present in pre-mRNA and mRNA molecules. These ribozymes seem to be involved in gene expression control and possibly in other basic cellular functions.

  • Other RNA-based elements and molecules, such as thermosensors, sRNAs, riboswitches and other RNA switches, can sense or react to changes in the environment and regulate gene expression through various mechanisms, including transcriptional, translational and splicing control.

  • The three-dimensional structures of ribozymes and riboswitches share several architectural principals. Given this commonality, some of these RNA molecules show striking similarities in molecular recognition and mechanistic aspects of their function.

  • RNA-based elements are probably more versatile than previously thought: they show some features that are typical of proteins and, in some situations, they might have functional advantages over proteins. For example, riboswitches can directly sense the concentration of cellular metabolites and control gene expression without a requirement for proteins, conserving cellular resources and providing fine control of gene expression.

  • Although the origins and evolution of RNA-based elements are not clear, some of these RNAs might have descended from a hypothetical primordial 'RNA world'.

Abstract

Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization and secondary and three-dimensional structures of ribozymes.
Figure 2: Reactions catalysed by ribozymes.
Figure 3: Gene regulation by RNA switches.
Figure 4: Secondary and tertiary structures of riboswitches.

Similar content being viewed by others

References

  1. Cech, T. R., Zaug, A. J. & Grabowski, P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert, W. Origin of life: the RNA World. Nature 319, 618 (1986).

    Article  Google Scholar 

  4. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002). References 4–6 describe the discovery of metabolite-binding riboswitches.

    Article  CAS  PubMed  Google Scholar 

  5. Nahvi, A. et al. Genetic control by a metabolite binding mRNA. Chem. Biol. 9, 1043–1049 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004). This work showed that a riboswitch can function as a ribozyme.

    Article  CAS  PubMed  Google Scholar 

  8. Forster, A. C. & Symons, R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Buzayan, J. M., Gerlach, W. L. & Bruening, G. Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323, 349–353 (1986).

    Article  CAS  Google Scholar 

  10. Sharmeen, L., Kuo, M. Y., Dinter-Gottlieb, G. & Taylor, J. Antigenomic RNA of human hepatitis d virus can undergo self-cleavage. J. Virol. 62, 2674–2679 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, H. N. et al. Human hepatitis δ virus RNA subfragments contain an autocleavage activity. Proc. Natl Acad. Sci USA 86, 1831–1835 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saville, B. J. & Collins, R. A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61, 685–696 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Salehi-Ashtiani, K., Luptak, A., Litovchick, A. & Szostak, J. W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006). The identification of several functional ribozymes in the human genome.

    Article  CAS  PubMed  Google Scholar 

  14. Teixeira, A. et al. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature 432, 526–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. West, S., Gromak, N. & Proudfoot, N. J. Human 5′→3′ exonuclease XRN2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Fedor, M. J. & Williamson, J. R. The catalytic diversity of RNAs. Nature Reviews Mol. Cell Biol. 6, 399–412 (2005).

    Article  CAS  Google Scholar 

  17. Kikovska, E., Svard, S. G. & Kirsebom, L. A. Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc. Natl Acad. Sci. USA 104, 2062–2067 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, J. L. & Pace, N. R. Identification of the universally conserved core of ribonuclease P RNA. RNA 3, 557–560 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindahl, L., Fretz, S., Epps, N. & Zengel, J. M. Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. RNA 6, 653–658 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michel, F. & Dujon, B. Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members. EMBO J. 2, 33–38 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michel, F., Umesono, K. & Ozeki, H. Comparative and functional anatomy of group II catalytic introns — a review. Gene 82, 5–30 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Pyle, A. M. & Lambowitz, A. M. in The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 469–506 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  23. Vogel, J. & Borner, T. Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J. 21, 3794–3803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muller, M. W., Stocker, P., Hetzer, M. & Schweyen, R. J. Fate of the junction phosphate in alternating forward and reverse self-splicing reactions of group II intron RNA. J. Mol. Biol. 222, 145–154 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen, H., Westhof, E. & Johansen, S. An mRNA is capped by a 2′, 5′ lariat catalyzed by a group I-like ribozyme. Science 309, 1584–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Altuvia, S., Kornitzer, D., Teff, D. & Oppenheim, A. B. Alternative mRNA structures of the cIII gene of bacteriophage λ determine the rate of its translation initiation. J. Mol. Biol. 210, 265–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Morita, M. T. et al. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev. 13, 655–665 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).

    Article  PubMed  Google Scholar 

  29. Chowdhury, S., Maris, C., Allain, F. H. & Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25, 2487–2497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lybecker, M. C. & Samuels, D. S. Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol. Microbiol. 64, 1075–1089 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Shamovsky, I., Ivannikov, M., Kandel, E. S., Gershon, D. & Nudler, E. RNA-mediated response to heat shock in mammalian cells. Nature 440, 556–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kolb, F. A. et al. Progression of a loop–loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 19, 5905–5915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lease, R. A., Cusick, M. E. & Belfort, M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl Acad. Sci. USA 95, 12456–12461 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. & Gottesman, S. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl Acad. Sci. USA 95, 12462–12467 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow, L. & Storz, G. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90, 43–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Altuvia, S., Zhang, A., Argaman, L., Tiwari, A. & Storz, G. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J. 17, 6069–6075 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, A. et al. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J. 17, 6061–6068 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, A., Wassarman, K. M., Ortega, J., Steven, A. C. & Storz, G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9, 11–22 (2002).

    Article  PubMed  Google Scholar 

  39. Grundy, F. J. & Henkin, T. M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74, 475–482 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Grundy, F. J., Winkler, W. C. & Henkin, T. M. tRNA-mediated transcription antitermination in vitro: codon–anticodon pairing independent of the ribosome. Proc. Natl Acad. Sci. USA 99, 11121–11126 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gagnon, Y. et al. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J. Biol. Chem. 269, 7473–7482 (1994).

    CAS  PubMed  Google Scholar 

  42. Breaker, R. R. in The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 89–108 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  43. Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 391–393 (2007). References 43 and 44 established the involvement of eukaryotic riboswitches in the control of alternative splicing.

    Article  CAS  Google Scholar 

  44. Kubodera, T. et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 555, 516–520 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Mandal, M. & Breaker, R. R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Struct. Mol. Biol. 11, 29–35 (2004).

    Article  CAS  Google Scholar 

  46. Corbino, K. A. et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in α-proteobacteria. Genome Biol. 6, R70 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Epshtein, V., Mironov, A. S. & Nudler, E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl Acad. Sci. USA 100, 5052–5056 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fuchs, R. T., Grundy, F. J. & Henkin, T. M. The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nature Struct. Mol. Biol. 13, 226–233 (2006).

    Article  CAS  Google Scholar 

  49. McDaniel, B. A., Grundy, F. J., Artsimovitch, I. & Henkin, T. M. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl Acad. Sci. USA 100, 3083–3088 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winkler, W. C., Cohen-Chalamish, S. & Breaker, R. R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl Acad. Sci. USA 99, 15908–15913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nou, X. & Kadner, R. J. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc. Natl Acad. Sci. USA 97, 7190–7195 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E. & Breaker, R. R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature Struct. Biol. 10, 701–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Sudarsan, N., Wickiser, J. K., Nakamura, S., Ebert, M. S. & Breaker, R. R. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17, 2688–2697 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C. & Breaker, R. R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Roth, A. et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nature Struct. Mol. Biol. 14, 308–317 (2007).

    Article  CAS  Google Scholar 

  57. Cromie, M. J., Shi, Y., Latifi, T. & Groisman, E. A. An RNA sensor for intracellular Mg2+. Cell 125, 71–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Barrick, J. E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl Acad. Sci. USA 101, 6421–6426 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sudarsan, N., Cohen-Chalamish, S., Nakamura, S., Emilsson, G. M. & Breaker, R. R. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem. Biol. 12, 1325–1335 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Blount, K. F., Wang, J. X., Lim, J., Sudarsan, N. & Breaker, R. R. Antibacterial lysine analogs that target lysine riboswitches. Nature Chem. Biol. 3, 44–49 (2007).

    Article  CAS  Google Scholar 

  61. Blount, K. F. & Breaker, R. R. Riboswitches as antibacterial drug targets. Nature Biotechnol. 24, 1558–1564 (2006).

    Article  CAS  Google Scholar 

  62. Batey, R. T., Gilbert, S. D. & Montange, R. K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004). References 62 and 66 describe the first three-dimensional structures of riboswitches.

    Article  CAS  PubMed  Google Scholar 

  63. Edwards, T. E. & Ferre-D'Amare, A. R. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA–small molecule recognition. Structure 14, 1459–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Montange, R. K. & Batey, R. T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Serganov, A., Polonskaia, A., Phan, A. T., Breaker, R. R. & Patel, D. J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167–1171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thore, S., Leibundgut, M. & Ban, N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004). References 68, 71, 72 and 79 provide insights into the group I intron self-splicing mechanism at the atomic level.

    Article  CAS  PubMed  Google Scholar 

  69. Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007). References 69 and 75 describe the crystal structures of the glmS ribozyme.

    Article  CAS  PubMed  Google Scholar 

  70. Ferre-D'Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis δ virus ribozyme. Nature 395, 567–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Golden, B. L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme-product complex. Nature Struct. Mol. Biol. 12, 82–89 (2005).

    Article  CAS  Google Scholar 

  72. Guo, F., Gooding, A. R. & Cech, T. R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004).

    CAS  PubMed  Google Scholar 

  73. Kazantsev, A. V. et al. Crystal structure of a bacterial ribonuclease P RNA. Proc. Natl Acad. Sci. USA 102, 13392–13397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ke, A., Zhou, K., Ding, F., Cate, J. H. & Doudna, J. A. A conformational switch controls hepatitis d virus ribozyme catalysis. Nature 429, 201–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Klein, D. J. & Ferre-D'Amare, A. R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Martick, M. & Scott, W. G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rupert, P. B. & Ferre-D'Amare, A. R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Rupert, P. B., Massey, A. P., Sigurdsson, S. T. & Ferre-D'Amare, A. R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Stahley, M. R. & Strobel, S. A. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309, 1587–1590 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Torres-Larios, A., Swinger, K. K., Krasilnikov, A. S., Pan, T. & Mondragon, A. Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437, 584–587 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Westhof, E., Masquida, B. & Jaeger, L. RNA tectonics: towards RNA design. Fold. Des. 1, R78–88 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA 12, 83–93 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De la Pena, M., Gago, S. & Flores, R. Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J. 22, 5561–5570 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S. D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct. Biol. 10, 708–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Krasilnikov, A. S., Yang, X., Pan, T. & Mondragon, A. Crystal structure of the specificity domain of ribonuclease P. Nature 421, 760–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Waldsich, C. & Pyle, A. M. A folding control element for tertiary collapse of a group II intron ribozyme. Nature Struct. Mol. Biol. 14, 37–44 (2007).

    Article  CAS  Google Scholar 

  87. Nudler, E. Flipping riboswitches. Cell 126, 19–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Wickiser, J. K., Winkler, W. C., Breaker, R. R. & Crothers, D. M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Wickiser, J. K., Cheah, M. T., Breaker, R. R. & Crothers, D. M. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44, 13404–13414 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Semrad, K. & Schroeder, R. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo. Genes Dev. 12, 1327–1337 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferat, J. L., Le Gouar, M. & Michel, F. A group II intron has invaded the genus Azotobacter and is inserted within the termination codon of the essential groEL gene. Mol. Microbiol. 49, 1407–1423 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Jenkins, K. P., Hong, L. & Hallick, R. B. Alternative splicing of the Euglena gracilis chloroplast roaA transcript. RNA 1, 624–633 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Vogel, J. & Hess, W. R. Complete 5′ and 3′ end maturation of group II intron-containing tRNA precursors. RNA 7, 285–292 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Przybilski, R. et al. Functional hammerhead ribozymes naturally encoded in the genome of Arabidopsis thaliana. Plant Cell 17, 1877–1885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferbeyre, G., Bourdeau, V., Pageau, M., Miramontes, P. & Cedergren, R. Distribution of hammerhead and hammerhead-like RNA motifs through the GenBank. Genome Res. 10, 1011–1019 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Graf, S., Przybilski, R., Steger, G. & Hammann, C. A database search for hammerhead ribozyme motifs. Biochem. Soc. Trans. 33, 477–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Gill, T., Cai, T., Aulds, J., Wierzbicki, S. & Schmitt, M. E. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol. Cell. Biol. 24, 945–953 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Rodionov, D. A., Dubchak, I., Arkin, A., Alm, E. & Gelfand, M. S. Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol. 5, R90 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Putzer, H., Gendron, N. & Grunberg-Manago, M. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J. 11, 3117–3127 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lease, R. A. & Belfort, M. A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc. Natl Acad. Sci. USA 97, 9919–9924 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sudarsan, N., Barrick, J. E. & Breaker, R. R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Borsuk, P. et al. L-arginine influences the structure and function of arginase mRNA in Aspergillus nidulans. Biol. Chem. 388, 135–144 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Hertel, K. J., Peracchi, A., Uhlenbeck, O. C. & Herschlag, D. Use of intrinsic binding energy for catalysis by an RNA enzyme. Proc. Natl Acad. Sci. USA 94, 8497–8502 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tanner, N. K. et al. A three-dimensional model of hepatitis δ virus ribozyme based on biochemical and mutational analyses. Curr. Biol. 4, 488–498 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Canny, M. D. et al. Fast cleavage kinetics of a natural hammerhead ribozyme. J. Amer. Chem. Soc. 126, 10848–10849 (2004).

    Article  CAS  Google Scholar 

  108. Richards, F. M. & Wyckoff, H. W. in The Enzymes (ed. Boyer, P. D.) 647–806 (Academic, New York, 1971).

    Google Scholar 

  109. Nahas, M. K. et al. Observation of internal cleavage and ligation reactions of a ribozyme. Nature Struct. Mol. Biol. 11, 1107–1113 (2004).

    Article  CAS  Google Scholar 

  110. Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res. 32, 3340–3353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Salehi-Ashtiani, K. & Szostak, J. W. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414, 82–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Koonin, E. V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol. Direct 1, 22 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. White, H. B. 3rd. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).

    Article  CAS  PubMed  Google Scholar 

  114. Hammann, C. & Westhof, E. Searching genomes for ribozymes and riboswitches. Genome Biol. 8, 210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Noeske, J. et al. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc. Natl Acad. Sci. USA 102, 1372–1377 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Serganov, A. et al. Structural basis for Diels–Alder ribozyme-catalyzed carbon–carbon bond formation. Nature Struct. Mol. Biol. 12, 218–224 (2005).

    Article  CAS  Google Scholar 

  117. Ke, A., Ding, F., Batchelor, J. D. & Doudna, J. A. Structural roles of monovalent cations in the HDV ribozyme. Structure 15, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Beattie, T. L., Olive, J. E. & Collins, R. A. A secondary structure model for the self-cleaving region of Neurospora VS RNA. Proc. Natl Acad. Sci. USA 92, 4686–4690 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Torres-Larios, A., Swinger, K. K., Pan, T. & Mondragon, A. Structure of ribonuclease P — a universal ribozyme. Curr. Opin. Struct. Biol. 16, 327–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Woodson, S. A. Structure and assembly of group I introns. Curr. Opin. Struct. Biol. 15, 324–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Rolle, K., Zywicki, M., Wyszko, E., Barciszewska, M. Z. & Barciszewski, J. Evaluation of the dynamic structure of DsrA RNA from E. coli and its functional consequences. J. Biochem. (Tokyo) 139, 431–438 (2006).

    Article  CAS  Google Scholar 

  122. Brown, L. & Elliott, T. Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium. J. Bacteriol. 179, 656–662 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Masse, E., Escorcia, F. E. & Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17, 2374–2383 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yousef, M. R., Grundy, F. J. & Henkin, T. M. Structural transitions induced by the interaction between tRNAGly and the Bacillus subtilis glyQS T box leader RNA. J. Mol. Biol. 349, 273–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Yousef, M. R., Grundy, F. J. & Henkin, T. M. tRNA requirements for glyQS antitermination: a new twist on tRNA. RNA 9, 1148–1156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Altuvia, S. & Wagner, E. G. H. Switching on and off with RNA. Proc. Natl Acad. Sci. USA 97, 9824–9826 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grant GM073618.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Serganov or Dinshaw J. Patel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank Identification (PDB ID)

Asoarcus spp. BH72 group I intron

Bacillus antracis glmS ribozyme

Bacillus subtilis RNase P, B-type

Bacillus subtilis xpt gene

Escherichia coli thiM

Hairpin ribozyme

Hammerhead ribozyme

Hepatitis δ virus ribozyme

Thermoanaerobacter tengcongensis riboswitch

FURTHER INFORMATION

Dinshaw J. Patel's homepage

Glossary

Satellite RNAs

Subviral agents whose multiplication in a host cell depends on coinfection with a helper virus.

Rolling-circle replication

A process of replication of some circular genomes, whereby one strand is replicated first and the second strand is replicated after completion of the first one.

RNA maturase

A protein enzyme, intron-specific, that acts as a cofactor to facilitate splicing.

Homing endonucleases

dsDNA-specific deoxyribonucleases that recognize large asymmetrical DNA sequences, which are not stringently defined, and which mobilize these DNA elements by facilitating their integration into new genomic sites. Because these sites lack introns and inteins (protein introns), this form of mobility is termed 'homing'. Homing endonucleases are encoded by intervening sequences embedded in either introns or inteins.

Reverse transcriptase

An RNA-dependent DNA polymerase that transcribes ssRNA into dsDNA.

Transcriptional attenuation

A regulatory mechanism whereby gene expression is controlled through the formation of alternative structures in the mRNA sequence that inhibit or facilitate the progression of transcription.

Aptamer

Derived from the Latin aptus, meaning 'to fit', aptamers are oligonucleotide or peptide molecules that bind specific target molecules. The term is usually applied to nucleic acid molecules that are created following selection from a large random sequence pool, as well as to natural metabolite-sensing domains in riboswitches, which possess similar recognition properties to artificially generated aptamers.

Boolean NOR logic gate

Boolean logic, named after George Boole, is a complete system for logical operations. A logic gate performs a logical operation on one or more logical inputs and produces a single logical output. The logical NOR, or joint denial, is a logical operator, meaning that the output is true if none of the inputs are true. Consequently, if one or both inputs are true, then the output is not true.

Prosthetic group

A non-protein component of a conjugated protein that is usually essential for the protein's function. Prosthetic groups are also called coenzymes and cofactors.

Lateral transfer

A process of transferring genetic material from one organism to another without reproduction. Also called horizontal gene transfer.

Telomerase

An RNA-containing reverse transcriptase that adds DNA sequence repeats (telomeric repeats) to the 3′ end of DNA strands in eukaryotic chromosomes using its RNA component as a synthesis template.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serganov, A., Patel, D. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8, 776–790 (2007). https://doi.org/10.1038/nrg2172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing