Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Innovations

Prenatal diagnosis: progress through plasma nucleic acids

Abstract

Over the past 40 years, much effort has been spent on developing non-invasive prenatal diagnostic methods. Since 1997, the progress of this field has been accelerated by the unexpected finding of extracellular fetal nucleic acids in maternal plasma. These developments have been translated into many novel genetic, epigenetic and gene-expression markers, and are expected to have a fundamental impact on the future practice of prenatal diagnosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of circulating fetal DNA analysis for prenatal diagnosis of single-gene disorders.
Figure 2: Principles of circulating fetal DNA and RNA analysis for the prenatal detection of trisomies.

Similar content being viewed by others

References

  1. Chen, X. Q. et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nature Med. 2, 1033–1035 (1996).

    CAS  PubMed  Google Scholar 

  2. Lo, Y. M. D. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 350, 485–487 (1997).

    CAS  PubMed  Google Scholar 

  3. Finning, K. M., Martin, P. G., Soothill, P. W. & Avent, N. D. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion 42, 1079–1085 (2002).

    CAS  PubMed  Google Scholar 

  4. Chan, K. C. A. et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem. 50, 88–92 (2004).

    CAS  PubMed  Google Scholar 

  5. Lo, Y. M. D. et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet. 62, 768–775 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Guibert, J. et al. Kinetics of SRY gene appearance in maternal serum: detection by real time PCR in early pregnancy after assisted reproductive technique. Hum. Reprod. 18, 1733–1736 (2003).

    CAS  PubMed  Google Scholar 

  7. Lo, Y. M. D. et al. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 64, 218–224 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Botezatu, I. et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin. Chem. 46, 1078–1084 (2000).

    CAS  PubMed  Google Scholar 

  9. Zhong, X. Y. et al. Cell-free DNA in urine: a marker for kidney graft rejection, but not for prenatal diagnosis? Ann. NY Acad. Sci. 945, 250–257 (2001).

    CAS  PubMed  Google Scholar 

  10. Smid, M. et al. No evidence of fetal DNA persistence in maternal plasma after pregnancy. Hum. Genet. 112, 617–618 (2003).

    PubMed  Google Scholar 

  11. Rijnders, R. J., Christiaens, G. C., Soussan, A. A. & van der Schoot, C. E. Cell-free fetal DNA is not present in plasma of nonpregnant mothers. Clin. Chem. 50, 679–681 (2004).

    CAS  PubMed  Google Scholar 

  12. Invernizzi, P. et al. Presence of fetal DNA in maternal plasma decades after pregnancy. Hum. Genet. 110, 587–591 (2002).

    CAS  PubMed  Google Scholar 

  13. Bianchi, D. W., Zickwolf, G. K., Weil, G. J., Sylvester, S. & DeMaria, M. A. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl Acad. Sci. USA 93, 705–708 (1996).

    CAS  PubMed  Google Scholar 

  14. Masuzaki, H. et al. Detection of cell free placental DNA in maternal plasma: direct evidence from three cases of confined placental mosaicism. J. Med. Genet. 41, 289–292 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chim, S. S. C. et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl Acad. Sci. USA 102, 14753–14758 (2005).

    CAS  PubMed  Google Scholar 

  16. Tjoa, M. L., Cindrova-Davies, T., Spasic-Boskovic, O., Bianchi, D. W. & Burton, G. J. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am. J. Pathol. 169, 400–404 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lo, Y. M. D. et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem. 45, 184–188 (1999).

    CAS  PubMed  Google Scholar 

  18. Levine, R. J. et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am. J. Obstet. Gynecol. 190, 707–713 (2004).

    CAS  PubMed  Google Scholar 

  19. Chiu, R. W. K. et al. Effects of blood processing protocols on fetal and total DNA quantification in maternal plasma. Clin. Chem. 47, 1607–1613 (2001).

    CAS  PubMed  Google Scholar 

  20. Chiu, R. W. K. et al. Comparison of protocols for extracting circulating DNA and RNA from maternal plasma. Clin. Chem. 51, 2209–2210 (2005).

    CAS  PubMed  Google Scholar 

  21. Costa, J. M., Benachi, A. & Gautier, E. New strategy for prenatal diagnosis of X-linked disorders. N. Engl. J. Med. 346, 1502 (2002).

    PubMed  Google Scholar 

  22. Rijnders, R. J., van der Schoot, C. E., Bossers, B., de Vroede, M. A. & Christiaens, G. C. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet. Gynecol. 98, 374–378 (2001).

    CAS  PubMed  Google Scholar 

  23. Lo, Y. M. D. et al. Prenatal diagnosis of fetal RHD status by molecular analysis of maternal plasma. N. Engl. J. Med. 339, 1734–1738 (1998).

    CAS  PubMed  Google Scholar 

  24. Tang, N. L. S., Leung, T. N., Zhang, J., Lau, T. K. & Lo, Y. M. D. Detection of fetal-derived paternally inherited X-chromosome polymorphisms in maternal plasma. Clin. Chem. 45, 2033–2035 (1999).

    CAS  PubMed  Google Scholar 

  25. Amicucci, P., Gennarelli, M., Novelli, G. & Dallapiccola, B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin. Chem. 46, 301–302 (2000).

    CAS  PubMed  Google Scholar 

  26. Chiu, R. W. K. et al. Prenatal exclusion of β-thalassaemia major by examination of maternal plasma. Lancet 360, 998–1000 (2002).

    PubMed  Google Scholar 

  27. Ding, C. et al. MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc. Natl Acad. Sci. USA 101, 10762–10767 (2004).

    CAS  PubMed  Google Scholar 

  28. Leung, T. N., Zhang, J., Lau, T. K., Hjelm, N. M. & Lo, Y. M. D. Maternal plasma fetal DNA as a marker for preterm labour. Lancet 352, 1904–1905 (1998).

    CAS  PubMed  Google Scholar 

  29. Lo, Y. M. D. et al. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin. Chem. 45, 1747–1751 (1999).

    CAS  PubMed  Google Scholar 

  30. Lee, T. et al. Down syndrome and cell-free fetal DNA in archived maternal serum. Am. J. Obstet. Gynecol. 187, 1217–1221 (2002).

    PubMed  Google Scholar 

  31. Li, Y. et al. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA 293, 843–849 (2005).

    CAS  PubMed  Google Scholar 

  32. Lui, Y. Y. N. et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 48, 421–427 (2002).

    CAS  PubMed  Google Scholar 

  33. Lui, Y. Y. N. et al. Origin of plasma cell-free DNA after solid organ transplantation. Clin. Chem. 49, 495–496 (2003).

    CAS  PubMed  Google Scholar 

  34. Dhallan, R. et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA 291, 1114–1119 (2004).

    CAS  PubMed  Google Scholar 

  35. Chung, G. T. et al. Lack of dramatic enrichment of fetal DNA in maternal plasma by formaldehyde treatment. Clin. Chem. 51, 655–658 (2005).

    CAS  PubMed  Google Scholar 

  36. Chinnapapagari, S. K., Holzgreve, W., Lapaire, O., Zimmermann, B. & Hahn, S. Treatment of maternal blood samples with formaldehyde does not alter the proportion of circulatory fetal nucleic acids (DNA and mRNA) in maternal plasma. Clin. Chem. 51, 652–655 (2005).

    CAS  PubMed  Google Scholar 

  37. Poon, L. L. M., Leung, T. N., Lau, T. K., Chow, K. C. & Lo, Y. M. D. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin. Chem. 48, 35–41 (2002).

    CAS  PubMed  Google Scholar 

  38. Grunau, C., Clark, S. J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, e65 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poon, L. L. M., Leung, T. N., Lau, T. K. & Lo, Y. M. D. Presence of fetal RNA in maternal plasma. Clin. Chem. 46, 1832–1834. (2000).

    CAS  PubMed  Google Scholar 

  40. Ng, E. K. O. et al. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin. Chem. 48, 1212–1217 (2002).

    CAS  PubMed  Google Scholar 

  41. Tsui, N. B. Y., Ng, E. K. O. & Lo, Y. M. D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002).

    CAS  PubMed  Google Scholar 

  42. Ng, E. K. O. et al. mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl Acad. Sci. USA 100, 4748–4753 (2003).

    CAS  PubMed  Google Scholar 

  43. Tsui, N. B. Y. et al. Systematic microarray-based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J. Med. Genet. 41, 461–467 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oudejans, C. B. M. et al. Detection of chromosome 21-encoded mRNA of placental origin in maternal plasma. Clin. Chem. 49, 1445–1449 (2003).

    CAS  PubMed  Google Scholar 

  45. Go, A. T. et al. Detection of placental transcription factor mRNA in maternal plasma. Clin. Chem. 50, 1413–1414 (2004).

    CAS  PubMed  Google Scholar 

  46. Wong, B. C. K. et al. Circulating placental RNA in maternal plasma is associated with a preponderance of 5′ mRNA fragments: implications for noninvasive prenatal diagnosis and monitoring. Clin. Chem. 51, 1786–1795 (2005).

    CAS  PubMed  Google Scholar 

  47. Gupta, A. K. et al. Detection of fetal DNA and RNA in placenta-derived syncytiotrophoblast microparticles generated in vitro. Clin. Chem. 50, 2187–2190 (2004).

    CAS  PubMed  Google Scholar 

  48. Ng, E. K. O. et al. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem. 49, 727–731 (2003).

    CAS  PubMed  Google Scholar 

  49. Masuzaki, H. et al. Clinical applications of plasma circulating mRNA analysis in cases of gestational trophoblastic disease. Clin. Chem. 51, 1261–1263 (2005).

    CAS  PubMed  Google Scholar 

  50. Lo, Y. M. D. et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nature Med. (in the press).

  51. Tong, Y. K. et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: theoretical and empirical considerations. Clin. Chem. 13 Oct 2006 (doi:10.1373/clinchem.2006.076851).

  52. Malone, F. D. et al. First-trimester or second-trimester screening, or both, for Down's syndrome. N. Engl. J. Med. 353, 2001–2011 (2005).

    CAS  PubMed  Google Scholar 

  53. Bianchi, D. W. At-home fetal DNA gender testing: caveat emptor. Obstet. Gynecol. 107, 216–218 (2006).

    PubMed  Google Scholar 

  54. Bianchi, D. W., Flint, A. F., Pizzimenti, M. F., Knoll, J. H. & Latt, S. A. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc. Natl Acad. Sci. USA 87, 3279–3283 (1990).

    CAS  PubMed  Google Scholar 

  55. Herzenberg, L. A., Bianchi, D. W., Schroder, J., Cann, H. M. & Iverson, G. M. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc. Natl Acad. Sci. USA 76, 1453–1455 (1979).

    CAS  PubMed  Google Scholar 

  56. Beroud, C. et al. Prenatal diagnosis of spinal muscular atrophy by genetic analysis of circulating fetal cells. Lancet 361, 1013–1014 (2003).

    CAS  PubMed  Google Scholar 

  57. Bianchi, D. W. et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat. Diagn. 22, 609–615 (2002).

    CAS  PubMed  Google Scholar 

  58. Cheung, M. C., Goldberg, J. D. & Kan, Y. W. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nature Genet. 14, 264–268 (1996).

    CAS  PubMed  Google Scholar 

  59. Bianchi, D. W. et al. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am. J. Hum. Genet. 61, 822–829 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiu, R. W. K. et al. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin. Chem. 48, 778–780 (2002).

    CAS  PubMed  Google Scholar 

  61. Lau, T. K., Lo, K. W., Chan, L. Y. S., Leung, T. Y. & Lo, Y. M. D. Cell-free fetal deoxyribonucleic acid in maternal circulation as a marker of fetal-maternal hemorrhage in patients undergoing external cephalic version near term. Am. J. Obstet. Gynecol. 183, 712–716 (2000).

    CAS  PubMed  Google Scholar 

  62. Lazar, L., Nagy, B., Ban, Z., Nagy, G. R. & Papp, Z. Presence of cell-free fetal DNA in plasma of women with ectopic pregnancies. Clin. Chem. 52, 1599–1601 (2006).

    CAS  PubMed  Google Scholar 

  63. Sekizawa, A. et al. Increased cell-free fetal DNA in plasma of two women with invasive placenta. Clin. Chem. 48, 353–354 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors' laboratories is supported by the Hong Kong Research Grants Council, the Innovation and Technology Fund and the Li Ka Shing Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Dennis Lo.

Ethics declarations

Competing interests

Both authors have filed patent applications on aspects of circulating fetal nucleic acids in maternal plasma. Y.M.D.L. is a shareholder of Plasmagene Biosciences Limited.

Related links

Related links

DATABASES

OMIM

β–thalassaemia

Down syndrome

haemophilia A

FURTHER INFORMATION

Chinese University of Hong Kong Department of Chemical Pathology

Human Epigenome Project

Glossary

Amniocentesis

A clinical procedure that involves the insertion of a needle through the womb to sample the amniotic fluid that bathes the fetus.

Chorionic villus sampling

A clinical procedure that is carried out to obtain a biopsy of the placenta during early pregnancy.

Confined placental chromosomal abnormalities

Chromosomal abnormalities that are restricted in distribution to the placenta, so are not found throughout all cells of the fetus.

Fetomaternal haemorrhage

Bleeding from a fetal source into the maternal circulation.

Gestational trophoblastic disease

The tumorous growth of fetal tissues in a maternal host.

Hyperemesis gravidarum

Severe vomiting in pregnancy.

Mass spectrometry

An analytical technique that detects and identifies small molecules, for example, peptide fragments and oligonucleotides, on the basis of their molecular mass and charge.

Polyhydramnios

An excess of amniotic fluid.

Pre-eclampsia

A clinical condition that presents during the second half of pregnancy; hallmark manifestations are hypertension, oedema and proteinuria.

Rhesus D incompatibility

When a woman with rhesus D antigen (RHD)-negative blood group is pregnant with a RHD-positive fetus, immune destruction of the fetal red blood cells can occur if the maternal immune system has previously been sensitized by the RHD antigen.

Single-allele base extension reaction

An analytical protocol that involves an extension reaction with an oligonucleotide primer that targets the detection of a specific polymorphic allele or a mutation.

Syncytiotrophoblast microparticles

Subcellular particles derived from syncytiotrophoblasts, which are the outermost layer of cells that cover the floating villi of the placenta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennis Lo, Y., Chiu, R. Prenatal diagnosis: progress through plasma nucleic acids. Nat Rev Genet 8, 71–77 (2007). https://doi.org/10.1038/nrg1982

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing