Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic diagnosis in the fetus

Abstract

Many genetic disorders are detectable in the prenatal period, and the capacity to identify them has increased remarkably as molecular genetic testing techniques continue to improve and become incorporated into clinical practice. The indications for prenatal genetic testing vary widely, including follow-up of an anomaly found by routine ultrasound or maternal aneuploidy screening, a family history of genetic disease, advanced maternal or paternal age, or evaluation of a low-risk pregnancy due to parental concern. The interpretation of genetic variants identified in the prenatal period poses unique challenges due to the lack of ability for deep phenotyping as well as the option to make critical decisions regarding pregnancy continuation and perinatal management. In this review, we address the various modalities currently available and commonly used for genetic testing, including preimplantation genetic testing of embryos, cell-free DNA testing, and diagnostic procedures such as chorionic villous sampling, amniocentesis, or percutaneous umbilical blood sampling, from which samples may be sent for a wide variety of genetic tests. We discuss the difference between these modalities for the genetic diagnosis of a fetus, their strengths and weaknesses, and strategies for their optimal use in order to direct perinatal care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Opportunities for prenatal genetic evaluation.
Fig. 2: Overview of embryonic development and its relevance to prenatal genetic testing.

Similar content being viewed by others

References

  1. Posey JE, O’Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med. 2019;21:798–812.

    PubMed  PubMed Central  Google Scholar 

  2. Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene discovery: fast and furious with no end in sight. Am J Hum Genet. 2019;105:448–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell. 2019;177:32–7.

    CAS  PubMed  Google Scholar 

  4. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369:1502–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.

    PubMed  PubMed Central  Google Scholar 

  6. Smith LD, Willig LK, Kingsmore SF. Whole-exome sequencing and whole-genome sequencing in critically Ill neonates suspected to have single-gene disorders. Cold Spring Harb Perspect Med. 2015;6:a023168.

    PubMed  Google Scholar 

  7. Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med. 2015;3:377–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Li J, Saucier JB, Feng Y, Jiang Y, Sinson J, et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med. 2019;25:439–47.

    CAS  PubMed  Google Scholar 

  9. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367:2175–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Committee opinion no. 682: Microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstet Gynecol. 2016,128:e262–8.

  11. McPherson E, Nestoridi E, Heinke D, Roberts DJ, Fretts R, Yazdy MM, et al. Alternatives to autopsy for fetal and early neonatal (perinatal) deaths: insights from the Wisconsin Stillbirth Service Program. Birth Defects Res. 2017;109:1430–41.

    CAS  PubMed  Google Scholar 

  12. Reddy UM, Page GP, Saade GR, Silver RM, Thorsten VR, Parker CB, et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N. Eng J Med. 2012;367:2185–93.

    CAS  Google Scholar 

  13. Shamseldin HE, Kurdi W, Almusafri F, Alnemer M, Alkaff A, Babay Z, et al. Molecular autopsy in maternal-fetal medicine. Genet Med. 2018;20:420–7.

    CAS  PubMed  Google Scholar 

  14. Committee opinion no. 691: Carrier screening for genetic conditions. Obstet Gynecol. 2017;129:e41–55.

  15. Committee opinion no. 690: Carrier screening in the age of genomic medicine. Obstet Gynecol. 2017;129:e35–40.

  16. Guo MH, Gregg AR. Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels. Genet Med. 2019;21:1940–7.

    PubMed  Google Scholar 

  17. Gregg AR, Edwards JG. Prenatal genetic carrier screening in the genomic age. Semin Perinatol. 2018;42:303–6.

    PubMed  Google Scholar 

  18. Dolan SM, Goldwaser TH, Jindal SK. Preimplantation genetic diagnosis for Mendelian conditions. JAMA. 2017;318:859–60.

    PubMed  Google Scholar 

  19. Rubio C, Bellver J, Rodrigo L, Castillón G, Guillén A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107:1122–9.

    PubMed  Google Scholar 

  20. Rechitsky S, Pakhalchuk T, San Ramos G, Goodman A, Zlatopolsky Z, Kuliev A. First systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testing. Fertil Steril. 2015;103:503–12.

    PubMed  Google Scholar 

  21. Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. BMJ. 2015;350:g7611.

    PubMed  Google Scholar 

  22. Committee on Practice Bulletins—Obstetrics CmoG, and the Society for Maternal-Fetal Medicine. Practice bulletin No. 163: Screening for fetal aneuploidy. Obstet Gynecol. 2016;127:e123–37.

    Google Scholar 

  23. Fisher JM, Harvey JF, Morton NE, Jacobs PA. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am J Hum Genet. 1995;56:669–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartz S, Kohan M, Pasion R, Papenhausen PR, Platt LD. Clinical experience of laboratory follow-up with noninvasive prenatal testing using cell-free DNA and positive microdeletion results in 349 cases. Prenat Diagn. 2018;38:210–8.

    CAS  PubMed  Google Scholar 

  25. Hartwig TS, Ambye L, Sørensen S, Jørgensen FS. Discordant non-invasive prenatal testing (NIPT)—a systematic review. Prenat Diagn. 2017;37:527–39.

    PubMed  Google Scholar 

  26. Bianchi DW, Parker RL, Wentworth J, Madankumar R, Saffer C, Das AF, et al. DNA sequencing versus standard prenatal aneuploidy screening. N. Engl J Med. 2014;370:799–808.

    CAS  PubMed  Google Scholar 

  27. Gil MM, Quezada MS, Revello R, Akolekar R, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2015;45:249–66.

    CAS  PubMed  Google Scholar 

  28. Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, Prosen TL, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015;314:162–9.

    CAS  PubMed  Google Scholar 

  29. Bianchi DW. Cherchez la femme: maternal incidental findings can explain discordant prenatal cell-free DNA sequencing results. Genet Med. 2018;20:910–7.

    CAS  PubMed  Google Scholar 

  30. Zhou X, Sui L, Xu Y, Song Y, Qi Q, Zhang J, et al. Contribution of maternal copy number variations to false-positive fetal trisomies detected by noninvasive prenatal testing. Prenat Diagn. 2017;37:318–22.

    CAS  PubMed  Google Scholar 

  31. Snyder MW, Gammill HS, Shendure J. Copy-number variation and -lse positive results of prenatal screening. N Engl J Med. 2015;373:2585.

    PubMed  PubMed Central  Google Scholar 

  32. Pertile MD, Halks-Miller M, Flowers N, Barbacioru C, Kinnings SL, Vavrek D, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9:eaan1240.

    PubMed  Google Scholar 

  33. Huijsdens-van AmsterdamK, Page-Christiaens L, Flowers N, Bonifacio MD, Ellis KMB, Vogel I, et al. Isochromosome 21q is overrepresented among false-negative cell-free DNA prenatal screening results involving down syndrome. Eur J Hum Genet. 2018;26:1490–6.

    Google Scholar 

  34. Committee Opinion No. 640: Cell-free DNA screening for fetal aneuploidy. Obstet Gynecol. 2015, 126: e31–7.

  35. Sullivan HK, Bayefsky M, Wakim PG, Huddleston K, Biesecker BB, Hull SC, et al. Noninvasive prenatal whole genome sequencing: pregnant women’s views and preferences. Obstet Gynecol. 2019;133:525–32.

    PubMed  PubMed Central  Google Scholar 

  36. Wapner RJ, Babiarz JE, Levy B, Stosic M, Zimmermann B, Sigurjonsson S, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212:332.e331–9.

    Google Scholar 

  37. Liang D, Cram DS, Tan H, Linpeng S, Liu Y, Sun H, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet Med. 2019;21:1998–2006.

    CAS  PubMed  Google Scholar 

  38. Chitty LS, Mason S, Barrett AN, McKay F, Lench N, Daley R, et al. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn. 2015;35:656–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jenkins LA, Deans ZC, Lewis C, Allen S. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice. Prenat Diagn. 2018;38:44–51.

    PubMed  Google Scholar 

  40. Rabinowitz T, Polsky A, Golan D, Danilevsky A, Shapira G, Raff C, et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res. 2019;29:428–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R, Simmons LE, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med. 2012;4:137ra176.

    Google Scholar 

  42. Bianchi DW, Wilkins-Haug LE, Enders AC, Hay ED. Origin of extraembryonic mesoderm in experimental animals: relevance to chorionic mosaicism in humans. Am J Med Genet. 1993;46:542–50.

    CAS  PubMed  Google Scholar 

  43. Grati FR, Ferreira J, Benn P, Izzi C, Verdi F, Vercellotti E, et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet Med. 2020;22:309–16.

  44. Malvestiti F, Agrati C, Grimi B, Pompilii E, Izzi C, Martinoni L, et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat Diagn. 2015;35:1117–27.

    CAS  PubMed  Google Scholar 

  45. Haas D, Haege G, Hoffmann GF, Burgard P. Prenatal presentation and diagnostic evaluation of suspected Smith-Lemli-Opitz (RSH) syndrome. Am J Med Genet A. 2013;161A:1008–11.

    PubMed  Google Scholar 

  46. Wang H, Dong Z, Zhang R, Chau MHK, Yang Z, Tsang KYC, et al. Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis. Genet Med 2019. https://doi.org/10.1038/s41436-019-0634-7.

  47. Dong Z, Ye L, Yang Z, Chen H, Yuan J, Wang H, et al. Balanced chromosomal rearrangement detection by low-pass whole-genome sequencing. Curr Protoc Hum Genet. 2018;96:8.18.11–18.18.16.

    Google Scholar 

  48. Sagi-Dain L, Cohen Vig L, Kahana S, Yacobson S, Tenne T, Agmon-Fishman I, et al. Chromosomal microarray vs. NIPS: analysis of 5541 low-risk pregnancies. Genet Med. 2019;21:2462–7.

    PubMed  Google Scholar 

  49. Srebniak MI, Joosten M, Knapen MFCM, Arends LR, Polak M, van Veen S, et al. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51:445–52.

    CAS  PubMed  Google Scholar 

  50. O’Donnell-Luria AH, Miller DT. A clinician’s perspective on clinical exome sequencing. Hum Genet. 2016;135:643–54.

    PubMed  Google Scholar 

  51. Talkowski ME, Ordulu Z, Pillalamarri V, Benson CB, Blumenthal I, Connolly S, et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med. 2012;367:2226–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Alfares A, Aloraini T, Subaie LA, Alissa A, Qudsi AA, Alahmad A, et al. Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. Genet Med. 2018;20:1328–33.

    CAS  PubMed  Google Scholar 

  53. Shamseldin HE, Swaid A, Alkuraya FS. Lifting the lid on unborn lethal Mendelian phenotypes through exome sequencing. Genet Med. 2013;15:307–9.

    CAS  PubMed  Google Scholar 

  54. Drury S, Williams H, Trump N, Boustred C, Lench N, Scott RH, et al. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn. 2015;35:1010–7.

    CAS  PubMed  Google Scholar 

  55. Greenbaum L, Pode-Shakked B, Eisenberg-Barzilai S, Dicastro-Keidar M, Bar-Ziv A, Goldstein N, et al. Evaluation of diagnostic yield in fetal whole-exome sequencing: a report on 45 consecutive families. Front Genet. 2019;10:425.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. de Koning MA, Haak MC, Adama van Scheltema PN, Peeters-Scholte CMPC, Koopmann TT, Nibbeling EAR, et al. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. Genet Med. 2019;21:2303–10.

    PubMed  Google Scholar 

  57. Chandler N, Best S, Hayward J, Faravelli F, Mansour S, Kivuva E, et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet Med. 2018;20:1430–7.

    PubMed  Google Scholar 

  58. Vora NL, Powell B, Brandt A, Strande N, Hardisty E, Gilmore K, et al. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med. 2017;19:1207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn. 2018;38:10–9.

    CAS  PubMed  Google Scholar 

  60. Petrovski S, Aggarwal V, Giordano JL, Stosic M, Wou K, Bier L, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet. 2019;393:758–67.

    CAS  PubMed  Google Scholar 

  61. Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-Jones E, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 2019;393:747–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Filges I, Friedman JM. Exome sequencing for gene discovery in lethal fetal disorders-harnessing the value of extreme phenotypes. Prenat Diagn.2015;35:1005–9.

    PubMed  Google Scholar 

  63. Alamillo CL, Powis Z, Farwell K, Shahmirzadi L, Weltmer EC, Turocy J, et al. Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat Diagn. 2015;35:1073–8.

    CAS  PubMed  Google Scholar 

  64. Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;104:1182–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kalynchuk EJ, Althouse A, Parker LS, Saller DN, Rajkovic A. Prenatal whole-exome sequencing: parental attitudes. Prenat Diagn. 2015;35:1030–6.

    CAS  PubMed  Google Scholar 

  66. Monaghan KG, Leach NT, Pekarek D, Prasad P, Rose NC, Committee APPaG. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020. https://doi.org/10.1038/s41436-019-0731-7.

Download references

Acknowledgements

MHW is supported by UM1HG008900. The authors thank the patients and families that we care for at our respective institutions and at the Maternal Fetal Care Center at Boston Children’s Hospital, who continue to teach and inspire us.

Author information

Authors and Affiliations

Authors

Contributions

MHW and PBA conceived of and outlined the manuscript, which MHW drafted and all authors critically reviewed and edited.

Corresponding authors

Correspondence to Monica H. Wojcik or Pankaj B. Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojcik, M.H., Reimers, R., Poorvu, T. et al. Genetic diagnosis in the fetus. J Perinatol 40, 997–1006 (2020). https://doi.org/10.1038/s41372-020-0627-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-0627-z

This article is cited by

Search

Quick links