Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Recombination: an underappreciated factor in the evolution of plant genomes

Abstract

Our knowledge of recombination rates and patterns in plants is far from being comprehensive. However, compelling evidence indicates a central role for recombination, through its influences on mutation and selection, in the evolution of plant genomes. Furthermore, recombination seems to be generally higher and more variable in plants than in animals, which could be one of the primary reasons for differences in genome lability between these two kingdoms. Much additional study of recombination in plants is needed to investigate these ideas further.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of mutation caused by homologous crossing over between repeated sequences.
Figure 2: The correlation of genomic features with recombination rates.

Similar content being viewed by others

References

  1. Gaut, B. S. Evolutionary dynamics of grass genomes. New Phytol. 154, 15–28 (2002).

    CAS  Google Scholar 

  2. Bennett, M. D. & Smith, J. B. Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. Lond. B Biol. Sci. 334, 309–345 (1991).

    CAS  Google Scholar 

  3. Adams, K. L. & Wendel, J. F. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8, 135–141 (2005).

    CAS  PubMed  Google Scholar 

  4. Cui, L. et al. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blanc, G., Hokamp, K. & Wolfe, K. H. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137–144 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vision, T. J., Brown, D. G. & Tanksley, S. D. The origins of genomic duplications in Arabidopsis. Science 290, 2114–2117 (2000).

    CAS  PubMed  Google Scholar 

  7. Bennetzen, J. L., Ma, J. & Devos, K. M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuermann, D., Molinier, J., Fritsch, O. & Hohn, B. The dual nature of homologous recombination in plants. Trends Genet. 21, 172–181 (2005).

    CAS  PubMed  Google Scholar 

  9. Jelesko, J. G., Carter, K., Thompson, W., Kinoshita, Y. & Gruissem, W. Meiotic recombination between paralogous RBCSB genes on sister chromatids of Arabidopsis thaliana. Genetics 166, 947–957 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, L. & Gaut, B. S. Does recombination shape the distribution and evolution of tandemly arrayed genes (TAGs) in the Arabidopsis thaliana genome? Genome Res. 13, 2533–2540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yandeau-Nelson, M. D., Xia, Y., Li, J., Neuffer, M. G. & Schnable, P. Unequal sister chromatid and homolog recombination at a tandem duplication of the a1 locus in maize. Genetics 173, 2211–2226 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Molinier, J., Stamm, M. E. & Hohn, B. SNM-dependent recombinational repair of oxidatively induced DNA damage in Arabidopsis thaliana. EMBO Rep. 5, 994–999 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Egli, D., Hafen, E. & Schaffner, W. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster. Genome Res. 14, 1382–1393 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lysak, M. A. et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl Acad. Sci. USA 103, 5224–5229 (2006).

    CAS  PubMed  Google Scholar 

  15. Ziolkowski, P. A., Blanc, G. & Sadowski, J. Structural divergence of chromosomal segments that arose from successive duplication events in the Arabidopsis genome. Nucleic Acids Res. 31, 1339–1350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lockton, S. & Gaut, B. S. Plant conserved non-coding sequences and paralogue evolution. Trends Genet. 21, 60–65 (2005).

    CAS  PubMed  Google Scholar 

  17. Pearson, C. E., Edamura, K. N. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nature Rev. Genet. 6, 729–742 (2005).

    CAS  PubMed  Google Scholar 

  18. Lercher, M. J. & Hurst, L. D. Can mutation or fixation biases explain the allele frequency distribution of human single nucleotide polymorphisms (SNPs)? Gene 300, 53–58 (2002).

    CAS  PubMed  Google Scholar 

  19. Hellmann, I., Ebersberger, I., Ptak, S. E., Paabo, S. & Przeworski, M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am. J. Hum. Genet. 72, 1527–1535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rattray, A. J. & Strathern, J. N. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu. Rev. Genet. 37, 31–66 (2003).

    CAS  PubMed  Google Scholar 

  21. Spencer, C. C. A. et al. The influence of recombination on human genetic diversity. PLoS Genet. 2, e148 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Betancourt, A. J. & Presgraves, D. C. Linkage limits the power of natural selection in Drosophila. Proc. Natl Acad. Sci. USA 99, 13616–13620 (2002).

    CAS  PubMed  Google Scholar 

  23. Ometto, L., Glinka, S., De Lorenzo, D. & Stephan, W. Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. Mol. Biol. Evol. 22, 2119–2130 (2005).

    CAS  PubMed  Google Scholar 

  24. Tenaillon, M. I. et al. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics 162, 1401–1413 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wright, S. I. et al. Testing for effects of recombination on nucleotide diversity in natural populations of Arabidopsis lyrata. Genetics 174, 1421–1430 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930).

    Google Scholar 

  27. Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294. (1966).

    CAS  PubMed  Google Scholar 

  28. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jensen-Seaman, M. I. et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 14, 528–538 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Anderson, L. K., Hooker, K. D. & Stack, S. M. The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159, 1259–1269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, J. S. et al. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171, 1963–1976 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172, 22529–22540 (2006).

    Google Scholar 

  33. Tanksley, S. D. et al. High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141–1160 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Buckler, E. S. T. et al. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153, 415–426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, H. et al. Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17, 3227–3238 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Drouaud, J. et al. Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination 'hot spots'. Genome Res. 16, 106–114 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, J. Z. et al. Physical maps and recombination frequency of six rice chromosomes. Plant J. 36, 720–730 (2003).

    CAS  PubMed  Google Scholar 

  38. See, D. R. et al. Gene evolution at the ends of wheat chromosomes. Proc. Natl Acad. Sci. USA 103, 4162–4167 (2006).

    CAS  PubMed  Google Scholar 

  39. Khrustaleva, L. I., de Melo, P. E., van Heusden, A. W. & Kik, C. The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid allium population. Genetics 169, 1673–1685 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schnable, P. S., Hsia, A. P. & Nikolau, B. J. Genetic recombination in plants. Curr. Opin. Plant Biol. 1, 123–129 (1998).

    CAS  PubMed  Google Scholar 

  41. Fu, H., Zheng, Z. & Dooner, H. K. Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc. Natl Acad. Sci. USA 99, 1082–1087 (2002).

    CAS  PubMed  Google Scholar 

  42. Yao, H. et al. Molecular characterization of meiotic recombination across the 140-kb multigenic a1sh2 interval of maize. Proc. Natl Acad. Sci. USA 99, 6157–6162 (2002).

    CAS  PubMed  Google Scholar 

  43. Ma, J. & Bennetzen, J. L. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc. Natl Acad. Sci. USA 103, 383–388 (2006).

    CAS  PubMed  Google Scholar 

  44. Matsuo, M., Ito, Y., Yamauchi, R. & Obokata, J. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17, 665–675 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768 (1999).

    CAS  PubMed  Google Scholar 

  46. Bowers, J. E. et al. Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc. Natl Acad. Sci. USA 102, 13206–13211 (2005).

    CAS  PubMed  Google Scholar 

  47. Peterson-Burch, B. D., Nettleton, D. & Voytas, D. F. Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol. 5, R78 (2004).

    PubMed  PubMed Central  Google Scholar 

  48. Wright, S. I., Agrawal, N. & Bureau, T. E. Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res. 13, 1897–1903 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rizzon, C. et al. Patterns of selection against transposons inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans. Genetics 165, 1127–1135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Anderson, L. K., Lai, A., Stack, S. M., Rizzon, C. & Gaut, B. S. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res. 16, 115–122 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

  52. Dvorak, J., Yang, Z. L., You, F. M. & Luo, M. C. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 168, 1665–1675 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Initiative, A. G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Google Scholar 

  54. Mizuno, H. et al. Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. Plant J. 46, 206–217 (2006).

    CAS  PubMed  Google Scholar 

  55. Yao, H. & Schnable, P. S. Cis-effects on meiotic recombination across distinct a1sh2 intervals in a common zea genetic background. Genetics 170, 1929–1944 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mezard, C. Meiotic recombination hotspots in plants. Biochem. Soc. Trans. 34, 531–534 (2006).

    CAS  PubMed  Google Scholar 

  57. Anderson, L. K. & Stack, S. M. Recombination nodules in plants. Cytogenet. Genome Res. 109, 198–204 (2005).

    CAS  PubMed  Google Scholar 

  58. Rizzon, C., Ponger, L. & Gaut, B. S. Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comp. Bio. 1 Sep 2006 (doi:10.1371/journal.pcbi.0020115).

  59. Akhunov, E. D. et al. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res. 13, 753–763 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas, J. H. Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains. Genetics 172, 127–143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dvorak, J. & Akhunov, E. D. Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the aegilops-triticum alliance. Genetics 171, 323–332 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall, A. E., Kettler, G. C. & Preuss, D. Dynamic evolution at pericentromeres. Genome Research 16, 355–364 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Akhunov, E. D. et al. Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc. Natl Acad. Sci. USA 100, 10836–10841 (2003).

    CAS  PubMed  Google Scholar 

  64. Hurst, L. D., Pal, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nature Rev. Genet. 5, 299–310 (2004).

    CAS  PubMed  Google Scholar 

  65. Sorrells, M. E. et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rice Chromosomes 11 and 12 Sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol. 3, 20 (2005).

  67. Olmo, E. Quantitative variations in the nuclear DNA and phylogenesis of the Amphibia Caryologia. 26, 43–68 (1973).

    CAS  Google Scholar 

  68. Gregory, T. R. Animal Genome Size Database [onlline], (2005).

    Google Scholar 

  69. Murphy, W. J., Stanyon, R. & O'Brien, S. J. Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol. 2, R1–R8 (2001).

    Google Scholar 

  70. Molinier, J., Ries, G., Zipfel, C. & Hohn, B. Transgeneration memory of stress in plants. Nature 442, 1046–1049 (2006).

    CAS  PubMed  Google Scholar 

  71. Singh, N. D., Arndt, P. F. & Petrov, D. A. Genomic heterogeneity of background substitutional patterns in Drosophila melanogaster. Genetics 169, 709–722 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Charlesworth, D. & Wright, S. I. Breeding systems and genome evolution. Curr. Opin. Genet. Dev. 11, 685–690 (2001).

    CAS  PubMed  Google Scholar 

  73. Cutter, A. D. & Payseur, B. A. Selection at linked sites in the partial selfer Caenorhabditis elegans. Mol. Biol. Evol. 20, 665–673 (2003).

    CAS  PubMed  Google Scholar 

  74. Coop, G. & Przeworski, M. An evolutionary view of human recombination. Nature Rev. Genet. 5 Dec 2006 (doi:10.1038/nrg1947).

  75. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    CAS  PubMed  Google Scholar 

  76. Plagnol, V., Padhukasahasram, B., Wall, J. D., Marjoram, P. & Nordborg, M. relative influences of crossing over and gene conversion on the pattern of linkage disequilibrium in Arabidopsis thaliana. Genetics 172, 2441–2448 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Qi, L. L. et al. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Anderson, L. K. et al. High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165, 849–865 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sherman, J. D. & Stack, S. M. Two-dimensional spreads of synaptonemal complexes from Solanaceous plants: high-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141, 683–708 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stephan, W. & Langley, C. H. DNA polymorphism in lycopersicon and crossing-over per physical length. Genetics 150, 1585–1593 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fransz, P. F. et al. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100, 367–376 (2000).

    CAS  PubMed  Google Scholar 

  82. Feltus, F. A. et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 14, 1812–1819 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work on recombination and genome evolution in the Gaut, Anderson and Dvorak laboratories are funded by the US National Science Foundation. S.I.W. is funded by the Alfred P. Sloan Foundation and the Canadian National Science and Engineering Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon S. Gaut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Fluorescence in situ hybridization

A technique that is used to label specific sequences on chromosomes with fluorescent molecules.

Heterochromatic knobs

Cytologically visible regions of highly condensed chromatin that are distinct from pericentromeric regions.

Microsatellite instability

A change in the number of repeats of microsatellites.

Paracentric inversion

A structural chromosome alteration that results from breakage, inversion and reinsertion of a fragment of a chromosomal arm.

Pericentric inversion

A structural alteration to a chromosome that results from breakage, inversion and reinsertion of a fragment that spans the centromere.

Polyploid

Having three or more sets of homologous chromosomes (for example, tetraploid organisms have four sets of chromosomes).

Synapsis

Formation of a synaptonemal complex between homologous chromosomes during prophase I of meiosis. Pairing is a more general term that refers to homologous associations in somatic as well as meiotic nuclei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaut, B., Wright, S., Rizzon, C. et al. Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8, 77–84 (2007). https://doi.org/10.1038/nrg1970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing