Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Miniaturization in functional genomics and proteomics

Key Points

  • Large biological data sets provide the basis for systems biology. In this article, we present a selection of miniaturized methods for the analysis of nucleic acids and proteins, with a particular focus on in vitro methods.

  • The reduction of complexity is, in many cases, an important pre-requisite for studying heterogeneous biological samples.

  • High-throughput generation of molecular data can be achieved through parallelization and miniaturization of biological assays. The development of DNA microarrays was one of the key steps in functional genomics, and has been continued with the introduction of protein microarrays.

  • New highly specific and sensitive (single-molecule) approaches for the detection of nucleic acids and proteins can be useful for diagnostic applications.

  • In this review, we mainly discuss three general miniaturization formats: microarrays, nanowell plates and microchannels. Integration of miniaturized systems can represent a major hurdle for high-throughput application.

  • Fluorescence labelling or detection methods that are based on mass spectrometry and electrochemistry are currently mainly being used in biology. Although fluorescence and mass spectrometry procedures are complementary approaches, particularly in basic research, electrical detection is an emerging tool in diagnostics.

  • Agreements on data standardization and interconnected databases are important for consistent analysis of different biological data sets.

Abstract

Proteins are the key components of the cellular machinery responsible for processing changes that are ordered by genomic information. Analysis of most human proteins and nucleic acids is important in order to decode the complex networks that are likely to underlie many common diseases. Significant improvements in current technology are also required to dissect the regulatory processes in high-throughtput and with low cost. Miniaturization of biological assays is an important prerequisite to achieve these goals in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA micorarrays.
Figure 2: Nanowell plates.
Figure 3: Protein microarrays.
Figure 4: Identification of protein–DNA interactions using the ChIP-chip approach.
Figure 5: The principle of MALDI imaging.

Similar content being viewed by others

References

  1. Hood, L., Heath, J. R., Phelps, M. E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Huttenhofer, A., Brosius, J. & Bachellerie, J. -P. RNomics: identification and function of small, non-messenger RNAs. Curr. Opin. Chem. Biol. 6, 835–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001). A systematic investigation of complex biological networks.

    Article  CAS  PubMed  Google Scholar 

  4. Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nature Biotechnol. 22, 1253–1259 (2004).

    Article  CAS  Google Scholar 

  5. Southern, E. M. DNA microarrays. History and overview. Methods Mol. Biol. 170, 1–15 (2001).

    CAS  PubMed  Google Scholar 

  6. Lennon, G. G. & Lehrach, H. Hybridization analyses of arrayed cDNA libraries. Trends Genet. 7, 314–317 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995). One of the first papers that shows comprehensive gene-expression analysis of microarrays.

    Article  CAS  PubMed  Google Scholar 

  8. Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991). The construction of high-density oligonucleotide microarrays is shown.

    Article  CAS  PubMed  Google Scholar 

  9. Bussow, K. et al. A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res. 26, 5007–5008 (1998). One of the first protein-array papers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001). Large-scale functional analysis of proteins on microarrays.

    Article  CAS  PubMed  Google Scholar 

  11. Church, J. G., Stapleton, E. A. & Reilly, B. D. Isolation of high quality mRNA from a discrete cell cycle population identified using a nonvital dye and fluorescence activated sorting. Cytometry 14, 271–275 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Whetsell, L., Maw, G., Nadon, N., Ringer, D. P. & Schaefer, F. V. Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene 7, 2355–2361 (1992).

    CAS  PubMed  Google Scholar 

  13. Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R. & Liotta, L. A. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Dreger, M., Bengtsson, L., Schoneberg, T., Otto, H. & Hucho, F. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc. Natl Acad. Sci. USA 98, 11943–11948 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Syvanen, A. C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Rev. Genet. 2, 930–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Sanger, F., Nickens, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27, e34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitra, R. D., Shendure, J., Olejnik, J., Edyta Krzymanska, O. & Church, G. M. Fluorescent in situ sequencing on polymerase colonies. Anal. Biochem. 320, 55–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ronaghi, M., Uhlen, M. & Nyren, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Deamer, D. W. & Akeson, M. Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol. 18, 147–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nature Biotechnol. 5, 1–5 (2003).

    Google Scholar 

  27. Matsuzaki et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Methods 2, 109–111 (2005).

    Google Scholar 

  28. Oliphant, A., Barker, D. L., Stuelpnagel, J. R. & Chee, M. S. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl., 56–58,60,61 (2002).

  29. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  30. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, K. et al. Chip-based genotyping by mass spectrometry. Proc. Natl Acad. Sci. USA 96, 10016–10020 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sauer, S. et al. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry. Nucleic Acids Res. 30, e22 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sauer, S., Lehrach, H. & Reinhardt, R. MALDI mass spectrometry analysis of single nucleotide polymorphisms by photocleavage and charge-tagging. Nucleic Acids Res. 31, e63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sauer, S. & Gut, I. G. Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782, 73–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ding, C. & Cantor, C. R. Direct molecular haplotyping of long-range genomic DNA with M1-PCR. Proc. Natl Acad. Sci. USA 100, 7449–7453 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tost, J. et al. Molecular haplotyping at high throughput. Nucleic Acids Res. 30, e96 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burgtorf, C. et al. Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Res. 13, 2717–2724 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nature Methods 1, 227–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Walter, J. & Paulsen, M. Imprinting and disease. Semin. Cell Dev. Biol. 14, 101–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Rakyan, V. K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olek, A., Oswald, J. & Walter, J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064–5066 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cottrell, S. E. et al. A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res. 32, e10 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Welsh, J. B. et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61, 5974–5978 (2001).

    CAS  PubMed  Google Scholar 

  45. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lander, E. S. Array of hope. Nature Genet. 21, 3–4 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol. 18, 630–634 (2000).

    Article  CAS  Google Scholar 

  49. Lizardi, P. M. et al. Mutation detection and single molecule counting using isothermal rolling circle amplification. Nature Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Chuaqui, R. F. et al. Post-analysis follow-up and validation of microarray experiments. Nature Genet. 32, 509–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nature Rev. Drug Discov. 3, 318–329 (2004).

    Article  CAS  Google Scholar 

  53. Zhang, C. & Kim, S. H. Overview of structural genomics: from structure to function. Curr. Opin. Chem. Biol. 7, 28–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Yokoyama, S. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7, 39–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Birney, E. et al. An overview of Ensembl. Genome Res. 14, 925–928 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baumeister, W. & Steven, A. C. Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25, 624–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Frank, J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31, 303–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Subramaniam, S. & Milne, J. L. Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, H., Bilgin, M. & Snyder, M. Proteomics. Annu. Rev. Biochem. 72, 783–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Klose, J. & Kobalz, U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–1059 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Seike, M. et al. Proteomic signature of human cancer cells. Proteomics 4, 2776–2788 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Gaskell, S. J. Electrospray: principles and practice. J. Mass Spectrom. 32, 677–688 (1997).

    Article  CAS  Google Scholar 

  64. Mirgorodskaya, E., Braeuer, C., Fucini, P., Lehrach, H. & Gobom, J. Nanoflow liquid chromatography coupled to matrix-assisted laser desorption/ionization mass spectrometry: sample preparation, data analysis, and application to the analysis of complex peptide mixtures. Proteomics 13, 399–408 (2005).

    Article  CAS  Google Scholar 

  65. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  66. Ong, S. E., Foster, L. J. & Mann, M. Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Gustavsson, N. et al. A proteomic method for the analysis of changes in protein concentration in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry. Proteomics (in the press).

  68. Claydon, M. A., Davey, S. N., Edwards-Jones, V. & Gordon, D. B. The rapid identification of intact microorganisms using mass spectrometry. Nature Biotechnol. 14, 1584–1586 (1996).

    Article  CAS  Google Scholar 

  69. Tang, N., Tornatore, P. & Weinberger, S. R. Current developments in SELDI affinity technology. Mass Spectrom. Rev. 23, 34–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Qu, Y. et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48, 1835–1843 (2002).

    CAS  PubMed  Google Scholar 

  71. Agaton, C. et al. Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol. Cell Proteomics 2, 405–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Sreekumar, A. et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res. 61, 7585–7593 (2001).

    CAS  PubMed  Google Scholar 

  73. Lueking, A. et al. A nonredundant human protein chip for antibody screening and serum profiling. Mol. Cell Proteomics 2, 1342–1349 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Seong, S. Y. & Choi, C. Y. Current status of protein chip development in terms of fabrication and application. Proteomics 3, 2176–2189 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Michaud, G. A. et al. Analyzing antibody specificity with whole proteome microarrays. Nature Biotechnol. 21, 1509–1512 (2003). A study describing the specificity problems that are associated with the analysis of large sets of proteins using antibodies.

    Article  CAS  Google Scholar 

  76. Schweitzer, B., Predki, P. & Snyder, M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 3, 2190–2199 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Angenendt, P., Glokler, J., Murphy, D., Lehrach, H. & Cahill, D. J. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem. 309, 253–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Espina, V. et al. Protein microarray detection strategies: focus on direct detection technologies. J. Immunol. Methods 290, 121–133 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  85. Goehler, H. et al. A protein interaction network links GIT1, an enhancer of Huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Walter, G., Konthur, Z. & Lehrach, H. High-throughput screening of surface displayed gene products. Comb. Chem. High Throughput Screen 4, 193–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Cicchini, C. et al. Searching for DNA–protein interactions by λ-phage display. J. Mol. Biol. 322, 697–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Ge, H. UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions. Nucleic Acids Res. 28, e3 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Snapyan, M. et al. Dissecting DNA–protein and protein–protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. Proteomics 3, 647–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Kersten, B. et al. Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein–DNA interactions. Anal. Biochem. 331, 303–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Hall, D. A. et al. Regulation of gene expression by a metabolic enzyme. Science 306, 482–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Bulyk, M. L., Gentalen, E., Lockhart, D. J. & Church, G. M. Quantifying DNA–protein interactions by double-stranded DNA arrays. Nature Biotechnol. 17, 573–577 (1999). One of the first studies to show a DNA–protein interaction on an array.

    Article  CAS  Google Scholar 

  94. Bulyk, M. L., Huang, X., Choo, Y. & Church, G. M. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc. Natl Acad. Sci. USA 98, 7158–7163 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Linnell, J. et al. Quantitative high–throughput analysis of transcription factor binding specificities. Nucleic Acids Res. 32, e44 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mukherjee, S. et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature Genet. 36, 1331–1339 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Weinmann, A. S., Yan, P. S., Oberley, M. J., Huang, T. H. & Farnham, P. J. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16, 235–244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Darvas, F. et al. Recent advances in chemical genomics. Curr. Med. Chem. 11, 3119–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000). One of the first proof-of-principle studies to show the applications for protein microarrays.

    CAS  PubMed  Google Scholar 

  100. Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. & Schreiber, S. L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Winssinger, N., Harris, J. L. Backes, B. J. & Schultz, P. G. From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew. Chem. Int. Ed. Engl. 40, 3152–3155 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Winssinger, N., Ficarro, S., Schultz, P. G. & Harris, J. L. Profiling protein function with small molecule microarrays. Proc. Natl Acad. Sci. USA 99, 11139–11144 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Muckenschnabel, I., Falchetto, R., Mayr, L. M. & Filipuzzi, I. SpeedScreen: label-free liquid chromatography-mass spectrometry-based high-throughput screening for the discovery of orphan protein ligands. Anal. Biochem. 324, 241–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nature Genet. 26, 283–289 (2000). This is a large-scale analysis of protein function using nanowells.

    Article  CAS  PubMed  Google Scholar 

  105. Angenendt, P., Lehrach, H., Kreutzberger, J. & Glokler, J. Subnanoliter enzymatic assays on microarrays. Proteomics 5, 420–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol. 23, 361–365 (2005).

    Article  CAS  Google Scholar 

  107. Agaton, C. et al. Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol. Cell Proteomics 2, 405–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Hadjantonakis, A. K., Dickinson, M. E., Fraser, S. E. & Papaioannou, V. E. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nature Rev. Genet. 4, 613–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Verkhusha, V. V. & Lukyanov, K. A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnol. 22, 289–296 (2004).

    Article  CAS  Google Scholar 

  110. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003). The authors provide a systematic analysis of protein localization in yeast using GFPs.

    Article  CAS  PubMed  Google Scholar 

  112. Davis, T. N. Protein localization in proteomics. Curr. Opin. Chem. Biol. 8, 49–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Med. 7, 493–496 (2001). This is the proof-of-concept paper on MALDI imaging.

    Article  CAS  PubMed  Google Scholar 

  114. Schweitzer, B. et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnol. 20, 359–365 (2002).

    Article  CAS  Google Scholar 

  115. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnol. 20, 473–477 (2002). The authors describe a highly sensitive and specific method for the detection of proteins that elegantly combines nucleic-acid and protein chemistry.

    Article  CAS  Google Scholar 

  116. Gullberg, M. et al. Cytokine detection by antibody-based proximity ligation. Proc. Natl Acad. Sci. USA 101, 8420–8424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Albers, J., Grunwald, T., Nebling, E., Piechotta, G. & Hintsche, R. Electrical biochip technology — a tool for microarrays and continuous monitoring. Anal. Bioanal. Chem. 377, 521–527 (2003). An overview on current developments in electrical biochip technology.

    Article  CAS  PubMed  Google Scholar 

  118. Paeschke, M., Dietrich, F., Uhlig, A. & Hintsche R. Voltametric multichannel measurements using silicon fabricated microelectrode arrays. Electroanalysis 10, 891–898 (1996).

    Article  Google Scholar 

  119. Hintsche, R., Albers, J., Bernt, H. & Eder, A. Multiplexing of microelectrode arrays in voltammetric measurements Electroanalysis 12, 660–665 (2000).

    Article  CAS  Google Scholar 

  120. Hood, L. & Perlmutter, R. M. The impact of systems approaches on biological problems in drug discovery. Nature Biotechnol. 22, 1215–1217 (2004).

    Article  CAS  Google Scholar 

  121. Weston, A. D. & Hood, L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3, 179–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Bilitewski, U., Genrich, M., Kadow, S. & Mersal, G. Biochemical analysis with microfluidic systems. Anal. Bioanal. Chem. 377, 556–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Whitesides, G. M. The 'right' size in nanobiotechnology. Nature Biotechnol. 21, 1161–1165 (2003). An informative introduction to nanobiotechnology.

    Article  CAS  Google Scholar 

  124. Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).

    Article  CAS  Google Scholar 

  125. Toegl, A., Kirchner, R., Gauer, C. & Wixforth, A. Enhancing results of microarray hybridizations through microagitation. J. Biomol. Tech. 14, 197–204 (2003).

    PubMed  PubMed Central  Google Scholar 

  126. Fu, A. Y., Chou, H. P., Spence, C., Arnold, F. H. & Quake, S. R. An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).

    Article  CAS  Google Scholar 

  128. Xue, Q. et al. Multichannel microchip electrospray mass spectrometry. Anal. Chem. 69, 426–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Figeys, D., Gygi, S. P., McKinnon, G. & Aebersold, R. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal. Chem. 70, 3728–3734 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, C. et al. Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun. Mass Spectrom. 14, 1377–1383 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Jin, L. J., Ferrance, J., Sanders, J. C. & Landers, J. P. A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab. Chip 3, 11–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Yamashita, M. & Fenn, J. B. Electrospray ion source. another variation on the free-jet theme. J. Phys. Chem., 88, 4451–4459 (1984).

    Article  CAS  Google Scholar 

  133. Alexandrov, M. L. Ion extraction from solutions of atmospheric pressure — a method of mass spectrometric analysis of bioorganic substances. Dokl. Akad. Nauk. SSSR, 277, 379–383 (1984).

    Google Scholar 

  134. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299–2303 (1988).

    Article  CAS  PubMed  Google Scholar 

  135. Tanaka, K., Waki, H., Ido, Y., Akita, S. & Yoshida Y. Protein and polymer analysis up to M/Zx 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

    Article  CAS  Google Scholar 

  136. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Biran, I. & Walt, D. R. Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. Anal. Chem. 74, 3046–3054 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Angenendt, P. et al. Cell-free protein expression and functional assay in nanowell chip format. Anal. Chem. 76, 1844–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for mulitplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  142. Ajayan, P. M. Charlier, J.-C. & Rinzler, A. G. Carbon nanotubes: From macromolecules to nanotechnology. Proc. Natl Acad. Sci. USA 96, 14199–14200 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Nietfeld for providing Fig. 1 and would like to acknowledge the European Union, the Senatsverwaltung für Wissenschaft, Forschung und Kultur, Berlin (Ultra-Structure Network), the German Ministry for Research and Education (NGFN), and the Max Planck Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Sauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Biochemical Tools Group at the Max Planck Institute

Bruker Daltonics web site

Ensembl

GenomeMatrix Database

International HapMap Project

Hans Lehrach's homepage

Max Planck Institute for Molecular Genetics

Microarray Gene Expression Data Society web site

MolTools (Advanced Molecular Tools for Array-based Analyses of Genomes)

Protein Structure Factory

RZPD — German Resource Centre for Genome Research

Glossary

SYSTEMS BIOLOGY

The study of the complex interactions that occur at all levels of biological information — from whole-genome sequence interactions to developmental and biochemical networks — and their functional relationship to organism-level phenotypes.

LASER CAPTURE MICRODISSECTION

A method in which cells are cut out from a tissue sample using a laser beam.

CELL FRACTIONATION

Separation of cells by size, weight, density, and optical and bioelectrical properties.

MONOLITHIC SUBSTRATES

A substrate made from silicon or polymers that allows microfabrication of planar fluidic devices that have integrated microchannels or functional elements such as electrodes and detectors.

MICROSATELLITE

A class of repetitive DNA sequences that are made up of tandemly organized repeats that are 2–8 nucleotides in length. They can be highly polymorphic and are frequently used as molecular markers in population genetics studies.

DNA MICROARRAY

An array of PCR products or oligonucleotides (corresponding to either genomic or cDNA sequences) that are deposited on solid glass slides and can be used to interrogate complex nucleic-acid samples by hybridization.

MASS SPECTROMETRY

An analytical technique for the determination of molecular mass. Although they vary greatly in design, all mass spectrometers share three general components: an ion source in which gas-phase molecular ions are produced from the analyte molecules, a mass analyser in which electrical and/or magnetic fields are used to separate the analyte ions by their different mass-to-charge (m/z) ratios and a detector for recording the separated ions.

HAPLOTYPE

The combination of alleles or genetic markers that is found on a single chromosome of a given individual.

ROLLING-CIRCLE AMPLIFICATION

A mode of DNA replication used by circular DNAs, which generates molecules that look similar to lariats. It was traditionally associated with certain bacterial plasmids and viruses, but is increasingly used as an alternative method for DNA amplification.

TILING OLIGONUCLEOTIDE MICROARRAYS

These microarrays contain a set of overlapping oligonucleotides that span either the entire genome, or for a more specialized approach, a subregion of interest.

LASER SCANNING CONFOCAL MICROSCOPE

A light microscope that allows imaging of fluorescent structures in thick (tens to hundreds of micrometres) specimens. A series of optical 'slices' are collected using a scanning laser beam and specially designed optics to eliminate out-of-focus excited fluorescence. The slices are reconstructed to provide detailed three-dimensional representations of the image data.

X-RAY CRYSTALLOGRAPHY

The study of the molecular structure of crystalline compounds through X-ray diffraction techniques. When an X-ray beam bombards a crystal, the atomic structure of the crystal causes the beam to scatter (diffract) in a specific pattern. X-ray crystallography provides information on the positions of individual atoms in the crystal, the distances between them, the angles of the atomic bonds and other features of molecular geometry.

CRYO-ELECTRON MICROSCOPY

Specimens are quick-frozen by plunging them into liquid ethane and are then kept frozen throughout the imaging process. Rapid freezing causes the water to form vitreous ice around the sample, preserving its native structure. Analysis of the structure can then be carried out in this state by electron microscopy.

MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY (MALDI MS).

An ionization technique that is suitable for mass spectrometric analysis of large biomolecules. Samples are prepared by embedding analyte molecules in a condensed matrix of small molecules. A brief laser pulse irradiates a spot on the sample, resulting in ablation of a small volume of the matrix and desorption of the embedded analyte molecules. Analyte molecules are then ionized, which leads to the formation of predominantly singly charged positive and negative analyte ions.

YEAST TWO-HYBRID (Y2H) ASSAY

One protein is fused to a transcriptional activation domain (the GAL4 activation domain) and the other to a DNA-binding domain (the GAL4 DNA-binding domain), and both fusion proteins are introduced into yeast. Expression of a (GAL4-regulated) reporter gene with the appropriate DNA-binding sites upstream of the promoter indicates that the two proteins physically interact.

TANDEM AFFINITY PURIFICATION

A method that uses the expression of fusion proteins in cells carrying a double tag that is applied in two consecutive steps of purification. This protocol has the benefit of high levels of purification and native protein elution for subsequent functional, structural or biochemical analysis.

ELECTROMOBILITY-SHIFT ASSAY

An assay in which proteins that bind to a DNA fragment are detected by virtue of their reduced migration in an electrical field. The assay is often used to detect transcription-factor binding.

ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA).

A widely used immunochemical method for detecting antigens or antibodies. ELISA methods are carried out in microtitre plates and use colorimetric detection.

PEPTIDE NUCLEIC ACID

A biopolymer molecule that consists of DNA bases connected by a backbone of peptide bonds, rather than phosphodiester bonds as in natural DNA.

SIZE-EXCLUSION CHROMATOGRAPHY

This method makes use of the different chromatographical behaviour that depends on the size of molecules and partly on their shape. The extent of the size exclusion of molecules is determined by the steric hindrance of analyte molecules that is due to matrix substance. Small molecules can more or less access the interior of the matrix, whereas large molecules pass by the matrix.

ELECTROSPRAY IONIZATION

An ionization technique that is suitable for mass spectrometric analysis of large biomolecules. The sample, dissolved in an aqueous-organic solvent, is pumped through a fine capillary that is made of electrically conductive material. The high voltage that is applied results in the emission of an aerosol of charged droplets of the analyte solution. Using heated gas, the spray is directed through a series of chambers that have successively decreased pressures, which results in the formation of gas-phase analyte ions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, S., Lange, B., Gobom, J. et al. Miniaturization in functional genomics and proteomics. Nat Rev Genet 6, 465–476 (2005). https://doi.org/10.1038/nrg1618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing