Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial genetics

Exploiting genomics, genetics and chemistry to combat antibiotic resistance

Key Points

  • The prevalence and spread of antibiotic resistance is an increasingly serious problem that hampers the effective treatment of infectious diseases.

  • Resistance to antibiotics is caused, in part, by the genetics of bacteria. Large population sizes mean that many resistance mutations pre-exist, and the ability to transfer genetic material between species facilitates the spread of resistance.

  • A second cause of antibiotic resistance is the overuse, misuse and suboptimal use of antibiotics, which result in selection for the emergence and spread of resistant strains.

  • As part of a strategy to combat antibiotic-resistance problems in medicine there is an urgent need to discover and develop new antibiotics against which there is no pre-existing resistance.

  • Bacterial genomics is providing information to identify potential new targets for antibiotic screening programmes. Molecular genetics techniques are being applied to validate potential antibiotic targets.

  • Combinatorial chemistry, combinatorial biology and structural biology are being used to create and to optimize lead compounds for antibiotic development. Combinatorial chemistry is also being used to generate effective analogues of existing antibiotics the usefulness of which is being threatened by increasing resistance.

  • Alternative strategies to the development of new antibiotics are being pursued in parallel. These include the development of inhibitors of resistance mechanisms, optimizing antibiotic usage, developing effective vaccines and exploring the usefulness of bacteriophage therapy.

Abstract

To address the worsening problem of antibiotic-resistant bacteria there is an urgent need to develop new antibiotics. Comparative genomics and molecular genetics are being applied to produce lists of essential new targets for compound screening programmes. Combinatorial chemistry and structural biology are being applied to rapidly explore and optimize the interactions between lead compounds and their biological targets. Several compounds that have been identified from target-based screens are now in development, but technical and economic constraints might result in a trickle, rather than a flood, of new antibiotics onto the market in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The VanA gene cluster that confers vancomycin resistance.
Figure 2: Target-based antibiotic discovery and development — the basic strategy.

Similar content being viewed by others

References

  1. McDermott, W. & Rogers, D. E. Social ramifications of control of microbial disease. Johns Hopkins Med. J. 151, 302–312 (1982).

    CAS  PubMed  Google Scholar 

  2. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    CAS  PubMed  Google Scholar 

  3. Hiramatsu, K. et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40, 135–136 (1997).

    CAS  PubMed  Google Scholar 

  4. Staphylococcus aureus resistant to vancomycin — United States, 2002. Morb. Mortal. Wkly Rep. 51, 565–567 (2002).

  5. Vancomycin-resistant Staphylococcus aureus — Pennsylvania, 2002. Morb. Mortal. Wkly Rep. 51, 902 (2002). References 4 and 5 are the first reports of high-level vancomycin resistance that is caused by the vanA gene cluster in Staphylococcus aureus.

  6. Loddenkemper, R., Sagebiel, D. & Brendel, A. Strategies against multidrug-resistant tuberculosis. Eur. Respir. J. (Suppl. 36) 20, 66s–77s (2002).

    Google Scholar 

  7. Chan, E. D. & Iseman, M. D. Current medical treatment for tuberculosis. BMJ 325, 1282–1286 (2002).

    PubMed  PubMed Central  Google Scholar 

  8. Gonzales, R. D. et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357, 1179 (2001).

    CAS  PubMed  Google Scholar 

  9. Bradford, P. A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garau, J. Treatment of drug-resistant pneumococcal pneumonia. Lancet Infect. Dis. 2, 404–415 (2002).

    CAS  PubMed  Google Scholar 

  11. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    CAS  PubMed  Google Scholar 

  12. Lipsitch, M. The rise and fall of antimicrobial resistance. Trends Microbiol. 9, 438–444 (2001). A review of the multitude of factors that influence the prevalence of antibiotic resistance in hospitals and the community.

    CAS  PubMed  Google Scholar 

  13. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    CAS  PubMed  Google Scholar 

  14. Schaaff, F., Reipert, A. & Bierbaum, G. An elevated mutation frequency favors development of vancomycin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 3540–3548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Brien, T. F. Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin. Infect. Dis. 34 (Suppl.), 78–84 (2002).

    Google Scholar 

  16. Woodford, N. Glycopeptide-resistant enterococci: a decade of experience. J. Med. Microbiol. 47, 849–862 (1998).

    CAS  PubMed  Google Scholar 

  17. Austin, D. J., Kristinsson, K. G. & Anderson, R. M. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc. Natl Acad. Sci. USA 96, 1152–1156 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grundmann, H., Hori, S., Winter, B., Tami, A. & Austin, D. J. Risk factors for the transmission of methicillin-resistant Staphylococcus aureus in an adult intensive care unit: fitting a model to the data. J. Infect. Dis. 185, 481–488 (2002).

    PubMed  Google Scholar 

  19. Mellon, M., Benbrook, C. & Benbrook, K. Hogging it: estimates of antimicrobial use in livestock. (Univ. South Carolina Publications, Cambridge, Massachusetts, USA, 2001).

    Google Scholar 

  20. Bottger, E. C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nature Med. 4, 1343–1344 (1998).

    CAS  PubMed  Google Scholar 

  21. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    CAS  PubMed  Google Scholar 

  22. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001). Evidence that secondary mutations to compensate for the biological fitness costs of antibiotic resistance arise in nature.

    CAS  PubMed  Google Scholar 

  23. Feikin, D. R. & Klugman, K. P. Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin. Infect. Dis. 35, 547–555 (2002).

    PubMed  Google Scholar 

  24. Oliveira, D. C., Tomasz, A. & de Lencastre, H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect. Dis. 2, 180–189 (2002). References 23 and 24 show that these successful pathogens have little genetic diversity, which indicates that they might be vulnerable to genomics-based targeting.

    CAS  PubMed  Google Scholar 

  25. Chalker, A. F. & Lunsford, R. D. Rational identification of new antibacterial drug targets that are essential for viability using a genomics-based approach. Pharmacol. Ther. 95, 1–20 (2002).

    CAS  PubMed  Google Scholar 

  26. Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A. & Pucci, M. J. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152–3162 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sa-Leao, R., Tomasz, A., Santos Sanches, I. & de Lencastre, H. Pilot study of the genetic diversity of the pneumococcal nasopharyngeal flora among children attending day care centers. J. Clin. Microbiol. 40, 3577–3585 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sa-Leao, R., Vilhelmsson, S. E., de Lencastre, H., Kristinsson, K. G. & Tomasz, A. Diversity of penicillin-nonsusceptible Streptococcus pneumoniae circulating in Iceland after the introduction of penicillin-resistant clone Spain(6B)-2. J. Infect. Dis. 186, 966–975 (2002).

    CAS  PubMed  Google Scholar 

  29. Gerdes, S. Y. et al. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J. Bacteriol. 184, 4555–4572 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akerley, B. J. et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl Acad. Sci. USA 99, 966–971 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, Y. et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266–2269 (2001). An interesting example of target validation using the expression of antisense RNA to silence genes.

    CAS  PubMed  Google Scholar 

  32. Knowles, D. J. New strategies for antibacterial drug design. Trends Microbiol. 5, 379–383 (1997).

    CAS  PubMed  Google Scholar 

  33. Merrell, D. S. & Camilli, A. Detection and analysis of gene expression during infection by in vivo expression technology. Phil. Trans. R. Soc. Lond. B 355, 587–599 (2000).

    CAS  Google Scholar 

  34. Valdivia, R. H. & Falkow, S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277, 2007–2011 (1997).

    CAS  PubMed  Google Scholar 

  35. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995). The original paper that describes signature-tagged mutagenesis (STM), possibly the most popular target-validation technique.

    CAS  PubMed  Google Scholar 

  36. Mecsas, J. Use of signature-tagged mutagenesis in pathogenesis studies. Curr. Opin. Microbiol. 5, 33–37 (2002).

    CAS  PubMed  Google Scholar 

  37. Herbert, M. A. et al. Signature tagged mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb. Pathog. 33, 211–223 (2002).

    CAS  PubMed  Google Scholar 

  38. Mei, J. M., Nourbakhsh, F., Ford, C. W. & Holden, D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 (1997).

    CAS  PubMed  Google Scholar 

  39. Garvis, S., Mei, J. M., Ruiz-Albert, J. & Holden, D. W. Staphylococcus aureus svrA: a gene required for virulence and expression of the agr locus. Microbiology 148, 3235–3243 (2002).

    CAS  PubMed  Google Scholar 

  40. Bahrani-Mougeot, F. K. et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45, 1079–1093 (2002).

    CAS  PubMed  Google Scholar 

  41. Lehoux, D. E., Sanschagrin, F. & Levesque, R. C. Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol. Lett. 210, 73–80 (2002).

    CAS  PubMed  Google Scholar 

  42. Autret, N., Dubail, I., Trieu-Cuot, P., Berche, P. & Charbit, A. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69, 2054–2065 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, Y. H., Bakshi, S., Chalmers, R. & Tang, C. M. Functional genomics of Neisseria meningitidis pathogenesis. Nature Med. 6, 1269–1273 (2000).

    CAS  PubMed  Google Scholar 

  44. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    CAS  PubMed  Google Scholar 

  45. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    CAS  PubMed  Google Scholar 

  46. Merrell, D. S., Hava, D. L. & Camilli, A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol. 43, 1471–1491 (2002).

    CAS  PubMed  Google Scholar 

  47. Hava, D. L. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389–1406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lau, G. W. et al. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40, 555–571 (2001). References 47 and 48 describe the validation of a large number of genetic targets in an important pathogen with serious antibiotic-resistance problems.

    CAS  PubMed  Google Scholar 

  49. Wilson, M. et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl Acad. Sci. USA 96, 12833–12838 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tao, J. et al. Drug target validation: lethal infection blocked by inducible peptide. Proc. Natl Acad. Sci. USA 97, 783–786 (2000). A new and successful target-validation method that also facilitates the subsequent search for inhibitor molecules.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, M. J. et al. Rational design of femtomolar inhibitors of isoleucyl tRNA synthetase from a binding model for pseudomonic acid-A. Biochemistry 39, 6003–6011 (2000).

    CAS  PubMed  Google Scholar 

  52. Jarvest, R. L. et al. Potent synthetic inhibitors of tyrosyl tRNA synthetase derived from C-pyranosyl analogues of SB-219383. Bioorg. Med. Chem. Lett. 11, 715–718 (2001).

    CAS  PubMed  Google Scholar 

  53. Stefanska, A. L., Fulston, M., Houge-Frydrych, C. S., Jones, J. J. & Warr, S. R. A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J. Antibiot. 53, 1346–1353 (2000).

    CAS  Google Scholar 

  54. Donadio, S. et al. Microbial technologies for the discovery of novel bioactive metabolites. J. Biotechnol. 99, 187–198 (2002).

    CAS  PubMed  Google Scholar 

  55. Blondelle, S. E., Perez-Paya, E. & Houghten, R. A. Synthetic combinatorial libraries: novel discovery strategy for identification of antimicrobial agents. Antimicrob. Agents Chemother. 40, 1067–1071 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 2001. J. Comb. Chem. 4, 369–418 (2002).

    CAS  PubMed  Google Scholar 

  57. Silen, J. L. et al. Screening for novel antimicrobials from encoded combinatorial libraries by using a two-dimensional agar format. Antimicrob. Agents Chemother. 42, 1447–1453 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Erlanson, D. A. et al. Site-directed ligand discovery. Proc. Natl Acad. Sci. USA 97, 9367–9372 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wyatt, P. G. et al. Structure–activity relationship investigations of a potent and selective benzodiazepine oxytocin antagonist. Bioorg. Med. Chem. Lett. 11, 1301–1305 (2001).

    CAS  PubMed  Google Scholar 

  60. Wyatt, P. G. et al. Identification of potent and selective oxytocin antagonists. Part 1: indole and benzofuran derivatives. Bioorg. Med. Chem. Lett. 12, 1399–1404 (2002).

    CAS  PubMed  Google Scholar 

  61. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000). A good review of alternative approaches to combinatorial chemistry.

    CAS  PubMed  Google Scholar 

  62. Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. & Schreiber, S. L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

    CAS  PubMed  Google Scholar 

  63. Koza, D. J. Synthesis of 7-substituted tetracycline derivatives. Org. Lett. 2, 815–817 (2000).

    CAS  PubMed  Google Scholar 

  64. Akritopoulou-Zanze, I. & Sowin, T. J. Solid-phase synthesis of macrolide analogues. J. Comb. Chem. 3, 301–311 (2001).

    CAS  PubMed  Google Scholar 

  65. Gordeev, M. F. Combinatorial lead discovery and optimization of antimicrobial oxazolidinones. Curr. Opin. Drug Discov. Devel. 4, 450–461 (2001).

    CAS  PubMed  Google Scholar 

  66. Sofia, M. J. et al. Discovery of novel disaccharide antibacterial agents using a combinatorial library approach. J. Med. Chem. 42, 3193–3198 (1999).

    CAS  PubMed  Google Scholar 

  67. Baizman, E. R. et al. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146, 3129–3140 (2000).

    CAS  PubMed  Google Scholar 

  68. Trias, J. The role of combichem in antibiotic discovery. Curr. Opin. Microbiol. 4, 520–525 (2001). A comprehensive review of the methods and successes in combinatorial chemistry applied to identifying new antibiotics.

    CAS  PubMed  Google Scholar 

  69. Klebe, G. Recent developments in structure-based drug design. J. Mol. Med. 78, 269–281 (2000).

    CAS  PubMed  Google Scholar 

  70. Clements, J. M. et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother. 45, 563–570 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hackbarth, C. J. et al. N-alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. Antimicrob. Agents Chemother. 46, 2752–2764 (2002). References 70 and 71 describe the use of a target-based screen and structure-based drug design to isolate a new antibiotic class.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim, D. & Strynadka, N. C. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nature Struct. Biol. 9, 870–876 (2002). An important insight into the structural basis of β-lactam resistance that shows, in detail, how to design new drugs.

    CAS  PubMed  Google Scholar 

  73. Rodriguez, E. & McDaniel, R. Combinatorial biosynthesis of antimicrobials and other natural products. Curr. Opin. Microbiol. 4, 526–534 (2001). A good review of the methods and potential of combinatorial biology in the search for new antibiotics.

    CAS  PubMed  Google Scholar 

  74. Baltz, R. in Antibiotic Development and Resistance (eds Hughes, D. & Andersson, D. I.) 233–257 (Taylor and Francis, London, New York, 2001).

    Google Scholar 

  75. Cane, D. E., Walsh, C. T. & Khosla, C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63–68 (1998).

    CAS  PubMed  Google Scholar 

  76. Cane, D. E. & Walsh, C. T. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6, 319–325 (1999).

    Google Scholar 

  77. McDaniel, R. et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel 'unnatural' natural products. Proc. Natl Acad. Sci. USA 96, 1846–1851 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Losey, H. C. et al. Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem. Biol. 9, 1305–1314 (2002).

    CAS  PubMed  Google Scholar 

  79. Kwon, H. J. et al. C-O bond formation by polyketide synthases. Science 297, 1327–1330 (2002).

    CAS  PubMed  Google Scholar 

  80. Miller, L. A., Ratnam, K. & Payne, D. J. β-lactamase-inhibitor combinations in the 21st century: current agents and new developments. Curr. Opin. Pharmacol. 1, 451–458 (2001).

    CAS  PubMed  Google Scholar 

  81. Nikaido, H. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 516–523 (1998).

    CAS  PubMed  Google Scholar 

  82. Alekshun, M. N. & Levy, S. B. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41, 2067–2075 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Markham, P. N., Westhaus, E., Klyachko, K., Johnson, M. E. & Neyfakh, A. A. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43, 2404–2408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gibbons, S., Oluwatuyi, M. & Kaatz, G. W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother. 51, 13–17 (2003).

    CAS  PubMed  Google Scholar 

  85. Kaatz, G. W., Moudgal, V. V., Seo, S. M. & Kristiansen, J. E. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 719–726 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nelson, M. L. & Levy, S. B. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob. Agents Chemother. 43, 1719–1724 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Renau, T. E. et al. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem. 42, 4928–4931 (1999).

    CAS  PubMed  Google Scholar 

  88. Lomovskaya, O. et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45, 105–116 (2001). An important primary research paper that identified active efflux-pump inhibitors that are now under development.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).

    CAS  PubMed  Google Scholar 

  90. Mao, W. et al. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol. Microbiol. 46, 889–901 (2002).

    CAS  PubMed  Google Scholar 

  91. Bjorkman, J., Hughes, D. & Andersson, D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 3949–3953 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Johanson, U., Aevarsson, A., Liljas, A. & Hughes, D. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258, 420–432 (1996).

    CAS  PubMed  Google Scholar 

  94. Bjorkman, J., Samuelsson, P., Andersson, D. I. & Hughes, D. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 31, 53–58 (1999).

    CAS  PubMed  Google Scholar 

  95. Bjorkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).

    CAS  PubMed  Google Scholar 

  96. Schrag, S. J. & Perrot, V. Reducing antibiotic resistance. Nature 381, 120–121 (1996).

    CAS  PubMed  Google Scholar 

  97. Reynolds, M. G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hanson, N. D. & Sanders, C. C. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des. 5, 881–894 (1999).

    CAS  PubMed  Google Scholar 

  99. Baptista, M., Depardieu, F., Courvalin, P. & Arthur, M. Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob. Agents Chemother. 40, 2291–2295 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Seppala, H. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med. 337, 441–446 (1997).

    CAS  PubMed  Google Scholar 

  101. Nissinen, A. et al. Development of β-lactamase-mediated resistance to penicillin in middle-ear isolates of Moraxella catarrhalis in Finnish children, 1978–1993. Clin. Infect. Dis. 21, 1193–1196 (1995).

    CAS  PubMed  Google Scholar 

  102. Kristinsson, K. G. Effect of antimicrobial use and other risk factors on antimicrobial resistance in pneumococci. Microb. Drug Resist. 3, 117–123 (1997).

    CAS  PubMed  Google Scholar 

  103. Lipsitch, M., Bergstrom, C. T. & Levin, B. R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl Acad. Sci. USA 97, 1938–1943 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonten, M. J., Austin, D. J. & Lipsitch, M. Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin. Infect. Dis. 33, 1739–1746 (2001).

    CAS  PubMed  Google Scholar 

  105. Boissinot, M. & Bergeron, M. G. Toward rapid real-time molecular diagnostic to guide smart use of antimicrobials. Curr. Opin. Microbiol. 5, 478–482 (2002).

    PubMed  Google Scholar 

  106. Schweitzer, B. & Kingsmore, S. Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 12, 21–27 (2001).

    CAS  PubMed  Google Scholar 

  107. Fluit, A. C., Visser, M. R. & Schmitz, F. J. Molecular detection of antimicrobial resistance. Clin. Microbiol. Rev. 14, 836–871 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Garcia de Viedma, D. et al. New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis. J. Clin. Microbiol. 40, 988–995 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Grohs, P., Kitzis, M. D. & Gutmann, L. In vitro bactericidal activities of linezolid in combination with vancomycin, gentamicin, ciprofloxacin, fusidic acid, and rifampin against Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 418–420 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fattorini, L. et al. Activities of moxifloxacin alone and in combination with other antimicrobial agents against multidrug-resistant Mycobacterium tuberculosis infection in BALB/c mice. Antimicrob. Agents Chemother. 47, 360–362 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, X. & Drlica, K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin. Infect. Dis. 33 (Suppl.), 147–156 (2001).

    Google Scholar 

  112. Zhao, X. & Drlica, K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J. Infect. Dis. 185, 561–565 (2002).

    PubMed  Google Scholar 

  113. Blondeau, J. M., Zhao, X., Hansen, G. & Drlica, K. Mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45, 433–438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Heath, P. T. & McVernon, J. The UK Hib vaccine experience. Arch. Dis. Child. 86, 396–399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ramsay, M. E., Andrews, N., Kaczmarski, E. B. & Miller, E. Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357, 195–196 (2001).

    CAS  PubMed  Google Scholar 

  116. Obaro, S. K. The new pneumococcal vaccine. Clin. Microbiol. Infect. 8, 623–633 (2002). References 114–116 describe the isolation and successful use of vaccines against important pathogens.

    CAS  PubMed  Google Scholar 

  117. Shinefield, H. et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med. 346, 491–496 (2002).

    PubMed  Google Scholar 

  118. Fraser, C. M., Eisen, J., Fleischmann, R. D., Ketchum, K. A. & Peterson, S. Comparative genomics and understanding of microbial biology. Emerg. Infect. Dis. 6, 505–512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Moxon, E. R., Hood, D. W., Saunders, N. J., Schweda, E. K. & Richards, J. C. Functional genomics of pathogenic bacteria. Phil. Trans. R. Soc. Lond. B 357, 109–116 (2002).

    CAS  Google Scholar 

  120. Wizemann, T. M. et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 69, 1593–1598 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).

    CAS  PubMed  Google Scholar 

  122. Comanducci, M. et al. NadA, a novel vaccine candidate of Neisseria meningitidis. J. Exp. Med. 195, 1445–1454 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Cockle, P. J. et al. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect. Immun. 70, 6996–7003 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pollard, A. J. & Moxon, E. R. The meningococcus tamed? Arch. Dis. Child. 87, 13–17 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bull, J. J., Levin, B. R., DeRouin, T., Walker, N. & Bloch, C. A. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2, 35 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Biswas, B. et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70, 204–210 (2002). The successful application of bacteriophage therapy in an in vivo model.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Abbanat, D., Macielag, M. & Bush, K. Novel antibacterial agents for the treatment of serious Gram-positive infections. Expert. Opin. Investig. Drugs 12, 379–399 (2003).

    CAS  PubMed  Google Scholar 

  129. Allen, N. E. & Nicas, T. I. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol. Rev. 26, 511–532 (2003).

    CAS  PubMed  Google Scholar 

  130. Jones, R. N. Microbiology of newer fluoroquinolones: focus on respiratory pathogens. Diagn. Microbiol. Infect Dis. 44, 213–220 (2002).

    CAS  PubMed  Google Scholar 

  131. Projan, S. J. New (and not so new) antibacterial targets — from where and when will the novel drugs come? Curr. Opin. Pharmacol. 2, 513–522 (2002). Pessimistic view of target-based screening from a pharmaceutical industry perspective.

    CAS  PubMed  Google Scholar 

  132. Projan, S. J. & Youngman, P. J. Antimicrobials: new solutions badly needed. Curr. Opin. Microbiol. 5, 463–465 (2002).

    PubMed  Google Scholar 

  133. Resnik, D. B. & De Ville, K. A. Bioterrorism and patent rights: 'compulsory licensure' and the case of Cipro. Am. J. Bioeth. 2, 29–39 (2002).

    PubMed  Google Scholar 

  134. McDermott, P. F. et al. The food safety perspective of antibiotic resistance. Anim. Biotechnol. 13, 71–84 (2002).

    CAS  PubMed  Google Scholar 

  135. Pugh, D. M. The EU precautionary bans of animal feed additive antibiotics. Toxicol. Lett. 128, 35–44 (2002).

    CAS  PubMed  Google Scholar 

  136. De, E. et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. 41, 189–198 (2001).

    CAS  PubMed  Google Scholar 

  137. Poole, K. Multidrug resistance in Gram-negative bacteria. Curr. Opin. Microbiol. 4, 500–508 (2001).

    CAS  PubMed  Google Scholar 

  138. Markham, P. N. & Neyfakh, A. A. Efflux-mediated drug resistance in Gram-positive bacteria. Curr. Opin. Microbiol. 4, 509–514 (2001).

    CAS  PubMed  Google Scholar 

  139. Hooper, D. C. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis. 7, 337–341 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Roberts, M. C. et al. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823–2830 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hakenbeck, R. et al. Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae. Infect. Immun. 69, 2477–2486 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Perichon, B. & Courvalin, P. Update on vancomycin resistance. Int. J. Clin. Pract. (Suppl.) 88–93 (2000).

  143. Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J. & Katz, L. Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675–679 (1991).

    CAS  PubMed  Google Scholar 

  144. Tsuji, S. Y., Wu, N. & Khosla, C. Intermodular communication in polyketide synthases: comparing the role of protein–protein interactions to those in other multidomain proteins. Biochemistry 40, 2317–2325 (2001).

    CAS  PubMed  Google Scholar 

  145. Xue, Q., Ashley, G., Hutchinson, C. R. & Santi, D. V. A multiplasmid approach to preparing large libraries of polyketides. Proc. Natl Acad. Sci. USA 96, 11740–11745 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pohl, N. L. Nonnatural substrates for polyketide synthases and their associated modifying enzymes. Curr. Opin. Chem. Biol. 6, 773–778 (2002).

    CAS  PubMed  Google Scholar 

  147. Shlaes, D. M. & Moellering, R. C. The United States Food and Drug Administration and the end of antibiotics. Clin. Infect. Dis. 34, 420–422 (2002).

    PubMed  Google Scholar 

  148. Fletcher, L. Cubist highlights FDA's antibiotic resistance. Nature Biotech. 20, 206–207 (2002).

    CAS  Google Scholar 

  149. Powers, J. H., Ross, D. B., Brittain, E., Albrecht, R. & Goldberger, M. J. The United States Food and Drug Administration and noninferiority margins in clinical trials of antimicrobial agents. Clin. Infect. Dis. 34, 879–881 (2002).

    PubMed  Google Scholar 

  150. Arthur, M. et al. Mechanisms of glycopeptide resistance in enterococci. J Infect. 32, 11–16 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by grants from the Swedish Research Council (Medicine and Natural Sciences), the European Union and Leo Pharma. I thank the anonymous reviewers for their positive and helpful suggestions to improve the manuscript. This paper is dedicated to the late Pat Hughes.

Author information

Authors and Affiliations

Authors

Related links

Related links

Databases

Entrez

PBP2A

Saccharomyces Genome Database

Ure2

Further information

The Institute for Genomic Research

Glossary

COMBINATORIAL CHEMISTRY

Methods that can, in a controlled manner, result in the synthesis of numerous chemical variants of a molecule.

TWO-COMPONENT REGULATORY SYSTEM

A signal-transduction system that consists of a sensor protein that senses and responds to an external signal, and which acts on a response-regulator protein that transmits the signal to other components of the cell.

ENTEROCOCCI

Gram-positive cocci bacteria, which include Enterococcus faecium and Enterococcus faecalis.

LATERAL GENE TRANSFER

The transfer of DNA, frequently cassettes of genes, between organisms.

BIOLOGICAL FITNESS

A relative measure of the ability of a particular group of bacteria to compete successfully in a particular environment.

MOLECULAR TYPING

The use of molecular genetic techniques — for example, multiplex PCR, pulse-field gel electrophoresis, Southern blotting and multilocus sequence typing — to genetically compare and characterize bacterial genomes.

TRANSPOSON MUTAGENESIS

The use of transposons to generate (knock-out) mutations.

SUICIDE VECTOR

A vector (plasmid) that is unable to replicate in a particular host and is maintained only if it recombines into the host genome.

PEPTIDE DEFORMYLASE

An essential bacterial metalloenzyme that deformylates the N-formylmethionine of newly synthesized bacterial polypeptides.

PBP2A

A penicillin-resistant transpeptidase that is encoded by mecA in methicillin-resistant S. aureus strains.

GLYCOPEPTIDES

The antibiotic class to which vancomycin belongs.

MULTIDRUG EFFLUX

The process by which efflux pumps bind and efflux a variety of structurally dissimilar compounds from the cell.

BROAD-SPECTRUM ANTIBIOTICS

Antibiotics that kill or inhibit the growth of phylogenetically distant bacterial species, for example, Gram-negative and Gram-positive bacteria.

MUTANT-PREVENTIVE CONCENTRATION

(MPC). The antibiotic concentration that prevents the growth of bacteria carrying single mutations to resistance.

MINIMAL INHIBITORY CONCENTRATION

(MIC). The minimal amount of antibiotic that is required to prevent the growth of a bacterial strain under defined conditions.

CONJUGATE VACCINE

A vaccine in which the bacterial polysaccharide antigen is coupled to a protein carrier that can be processed and presented to T cells bearing specific receptors for the protein complex.

SEROTYPE

A bacterial strain that is classified on the basis of its surface antigens.

BACTERIOPHAGE

A virus that infects, grows on and can kill specific strains of bacteria.

PHASE III CLINICAL TRIALS

The assessment of efficacy and side-effects; generally involves hundreds of patients enrolled at different clinics nationwide or worldwide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nat Rev Genet 4, 432–441 (2003). https://doi.org/10.1038/nrg1084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing