Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alternative therapeutic strategies to treat antibiotic-resistant pathogens

Abstract

Resistance threatens to render antibiotics — which are essential for modern medicine — ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative antibiotic approaches are diverse in structure and target spectrum.
Fig. 2: Approaches to AMP discovery.
Fig. 3: Structure and mechanism of action of the AAC DSTA4637S.
Fig. 4: Bacteriophage and bacteriophage-based therapeutics.
Fig. 5: ASO structures and targets.

Similar content being viewed by others

References

  1. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  2. Genilloud, O. Natural products discovery and potential for new antibiotics. Curr. Opin. Microbiol. 51, 81–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Hutchings, M., Truman, A. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Lepore, C., Silver, L., Theuretzbacher, U., Thomas, J. & Visi, D. The small-molecule antibiotics pipeline: 2014–2018. Nat. Rev. Drug Discov. 18, 739–739 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Theuretzbacher, U., Outterson, K., Engel, A. & Karlamp, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18, 275–285 (2020).

    Article  PubMed  Google Scholar 

  6. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Hotinger, J. A., Morris, S. T. & May, A. E. The case against antibiotics and for anti-virulence therapeutics. Microorganisms 9, 2049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tyers, M. & Wright, G. D. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17, 141–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 19, 287–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jun, L. et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 11, 3919–3931 (2019).

    Google Scholar 

  11. Baltzer, S. A. & Brown, M. H. Antimicrobial peptides — promising alternatives to conventional antibiotics. J. Mol. Microb. Biotech. 20, 228–235 (2011).

    CAS  Google Scholar 

  12. Kumar, P., Kizhakkedathu, J. N. & Straus, S. K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I. & Miller, A. A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 14, 529–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, C. H. & Lu, T. K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9, 24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, S.-J., Park, S. J., Mishig-Ochir, T. & Lee, B.-J. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect.Ther. 12, 1477–1486 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Durand, G. A., Raoult, D. & Dubourg, G. Antibiotic discovery: history, methods and perspectives. Int. J. Antimicrob. Agents. 53, 371–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Torres, M. D. T., Sothiselvam, S., Lu, T. K. & de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol. 431, 3547–3567 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, P., Chu, C., Tsai, Y., Chuang, Y. & Lung, F. Design, synthesis, and antimicrobial activities of novel functional peptides against Gram‐positive and Gram‐negative bacteria. Chem. Biol. Drug Des. 94, 1537–1544 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Edwards, I. A., Elliott, A. G., Kavanagh, A. M., Blaskovich, M. A. T. & Cooper, M. A. Structure–activity and −toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect. Dis. 3, 917–926 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Torres, M. D. T. et al. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun. Biol. 1, 221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cardoso, M. H. et al. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front. Microbiol. 10, 3097 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012).

    Article  CAS  Google Scholar 

  23. Bhadra, P., Yan, J., Li, J., Fong, S. & Siu, S. W. I. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep. 8, 1697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee, E. Y., Lee, M. W., Fulan, B. M., Ferguson, A. L. & Wong, G. C. L. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7, 20160153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spohn, R. et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 10, 4538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martin-Loeches, I., Dale, G. E. & Torres, A. Murepavadin: a new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther. 16, 259–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Polyphor, A. G. Polyphor temporarily halts enrollment in the Phase III studies of murepavadin for the treatment of patients with nosocomial pneumonia. https://spexisbio.com/news/corporate-news-details/?newsid=1775911 (2019).

  28. Hartzell, J. D. et al. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis. 48, 1724–1728 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Gai, Z., Samodelov, S. L., Kullak-Ublick, G. A. & Visentin, M. Molecular mechanisms of colistin-induced nephrotoxicity. Molecules 24, 653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaara, M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin B and colistin. Med. Res. Rev. 38, 1661–1673 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zurawski, D. V. et al. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 61, e01239-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brown, P. & Dawson, M. J. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J. Antibiotics 70, 386–394 (2017).

    Article  CAS  Google Scholar 

  33. Quale, J. et al. Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary gram-negative pathogens in New York City. Microb. Drug Resist. 18, 132–136 (2011).

    Article  PubMed  Google Scholar 

  34. Brown, P. et al. Design of next generation polymyxins with lower toxicity: the discovery of SPR206. ACS Infect. Dis. 5, 1645–1656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bruss, J. et al. Single- and multiple-ascending-dose study of the safety, tolerability, and pharmacokinetics of the polymyxin derivative SPR206. Antimicrob. Agents Chemother. 65, e00739-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roberts, K. D. et al. A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nat. Commun. 13, 1625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du, H., Chen, L., Tang, Y. W. & Kreiswirth, B. N. Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect. Dis. 16, 287–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z. et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tavassoli, A. & Benkovic, S. J. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc. 2, 1126–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Lam, K. S., Lebl, M. & Krchňák, V. The “One-Bead-One-Compound” combinatorial library method. Chem. Rev. 97, 411–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Ullman, C. G., Frigotto, L. & Cooley, R. N. In vitro methods for peptide display and their applications. Brief. Funct. Genomics 10, 125–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Davies, J. S. The cyclization of peptides and depsipeptides. J. Pept. Sci. 9, 471–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kale, S. S. et al. Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat. Chem. 10, 715–723 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Tucker, A. T. et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 172, 618–628.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Randall, J. R. et al. Synthetic antibacterial discovery of symbah-1, a macrocyclic β-hairpin peptide antibiotic. iScience 25, 103611 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Sivertsen, A. et al. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol. 14, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jangir, P. K. et al. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. eLife 12, e84395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagy, E., Nagy, G., Power, C. A., Badarau, A. & Szijártó, V. Anti-bacterial monoclonal antibodies. Adv. Exp. Med. Biol. 1053, 119–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Niebecker, R. & Kloft, C. Safety of therapeutic monoclonal antibodies. Curr. Drug Saf. 5, 275–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kollef, M. H. & Betthauser, K. D. Monoclonal antibodies as antibacterial therapies: thinking outside of the box. Lancet Infect. Dis. 21, 1201–1202 (2021).

    Article  PubMed  Google Scholar 

  53. Motley, M. P., Banerjee, K. & Fries, B. C. Monoclonal antibody-based therapies for bacterial infections. Curr. Opin. Infect. Dis. 32, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Singh, S. et al. Monoclonal antibodies: a review. Curr. Clin. Pharmacol. 13, 85–99 (2018).

    Article  PubMed  Google Scholar 

  55. Vij, R. et al. A targeted boost-and-sort immunization strategy using Escherichia coli BamA identifies rare growth inhibitory antibodies. Sci. Rep. 8, 7136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Storek, K. M. et al. Massive antibody discovery used to probe structure-function relationships of the essential outer membrane protein LptD. eLife 8, 3002 (2019).

    Article  Google Scholar 

  57. LaRocca, T. J. et al. The bactericidal effect of a complement-independent antibody is osmolytic and specific to Borrelia. Proc. Natl Acad. Sci. USA 106, 10752–10757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Migone, T.-S. et al. Raxibacumab for the treatment of inhalational anthrax. N. Engl. J. Med. 361, 135–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Greig, S. L. Obiltoxaximab: first global approval. Drugs 76, 823–830 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Wilcox, M. H. et al. Bezlotoxumab for prevention of recurrent clostridium difficile infection. N. Engl. J. Med. 376, 305–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. François, B. et al. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis. 21, 1313–1323 (2021).

    Article  PubMed  Google Scholar 

  62. Wang, H., Chen, D. & Lu, H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl. Microbiol. Biotechnol. 106, 3957–3972 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Zurawski, D. V. & McLendon, M. K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics 9, 155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. López, E. L. et al. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against shiga-like toxin 2 in healthy adults and in pediatric patients infected with shiga-like toxin-producing Escherichia coli. Antimicrob. Agents Chemother. 54, 239–243 (2010).

    Article  PubMed  Google Scholar 

  65. Mohawk, K. L., Melton-Celsa, A. R., Robinson, C. M. & O’Brien, A. D. Neutralizing antibodies to Shiga toxin type 2 (Stx2) reduce colonization of mice by Stx2-expressing Escherichia coli O157:H7. Vaccine 28, 4777–4785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheng, L. W., Henderson, T. D., Patfield, S., Stanker, L. H. & He, X. Mouse in vivo neutralization of Escherichia coli Shiga toxin 2 with monoclonal antibodies. Toxins 5, 1845–1858 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yamagami, S. et al. Efficacy of postinfection treatment with anti-shiga toxin (Stx) 2 humanized monoclonal antibody TMA-15 in mice lethally challenged with stx-producing Escherichia coli. J. Infect. Dis. 184, 738–742 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Hotinger, J. A. & May, A. E. Antibodies inhibiting the type III secretion system of gram-negative pathogenic bacteria. Antibodies 9, 35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, S. et al. Identification of a novel linear epitope on EspA from enterohemorrhagic E. coli using a neutralizing and protective monoclonal antibody. Clin. Immunol. 138, 77–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Ruano-Gallego, D. et al. A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa. PLoS Pathog. 15, e1008031 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mishra, M. et al. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell. Microbiol. 14, 95–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Howell, H. A., Logan, L. K. & Hauser, A. R. Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia. mBio 4, e00032-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl. Med. 6, 262ra155 (2014).

    Article  PubMed  Google Scholar 

  74. DiGiandomenico, A. et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J. Exp. Med. 209, 1273–1287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ray, V. A. et al. Anti-Psl targeting of Pseudomonas aeruginosa biofilms for neutrophil-mediated disruption. Sci. Rep. 7, 16065 (2018).

    Article  Google Scholar 

  76. Thanabalasuriar, A. et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J. Clin. Invest. 127, 2249–2261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ali, S. O. et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin. Microbiol. Infect. 25, 629.e1–629.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Chastre, J. et al. 635. Efficacy, pharmacokinetics (PK), and safety profile of MEDI3902, an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody in mechanically ventilated intensive care unit patients; results of the phase 2 EVADE study conducted by the public-private COMBACTE-MAGNET consortium in the Innovative Medicines Initiative (IMI) program. Open Forum Infect. Dis. 7, S377–S378 (2020).

    Article  PubMed Central  Google Scholar 

  79. Que, Y.-A. et al. Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1861–1867 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Secher, T. et al. The anti-Pseudomonas aeruginosa antibody panobacumab is efficacious on acute pneumonia in neutropenic mice and has additive effects with meropenem. PLoS One 8, e73396–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cao, J. et al. Targeting the gram-negative bacteria peptidoglycan synthase MraY as a new approach for monoclonal antibody anti-bacterial activity. Hum. Vaccin. Immunother. 13, 2086–2091 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Storek, K. M. et al. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc. Natl Acad. Sci. USA 115, 3692–3697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deveuve, Q., Lajoie, L., Barrault, B. & Thibault, G. The proteolytic cleavage of therapeutic monoclonal antibody hinge region: more than a matter of subclass. Front. Immunol. 11, 168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prokešová, L. et al. Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. Immunol. Lett. 31, 259–265 (1992).

    Article  PubMed  Google Scholar 

  85. Storek, K. M. et al. The Escherichia coli β-barrel assembly machinery is sensitized to perturbations under high membrane fluidity. J. Bacteriol. 201, e00517-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Mariathasan, S. & Tan, M. W. Antibody-antibiotic conjugates: a novel therapeutic platform against bacterial infections. Trends Mol. Med. 23, 135–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Chari, R. V. J., Miller, M. L. & Widdison, W. C. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl. 53, 3796–3827 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Zhou, C. et al. Pharmacokinetics and pharmacodynamics of DSTA4637A: a novel THIOMABTM antibody antibiotic conjugate against Staphylococcus aureus in mice. mAbs 8, 1612–1619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peck, M. et al. A phase 1, randomized, single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S, an anti-Staphylococcus aureus thiomab antibody-antibiotic conjugate, in healthy volunteers. Antimicrob. Agents Chemother. 63, e02588-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rymut, S. M. et al. 1305. Comparison of pharmacokinetics of DSTA4637S, a novel THIOMABTM antibody-antibiotic conjugate, in patients with Staphylococcus aureus bacteremia receiving standard-of-care antibiotics with pharmacokinetics in healthy volunteers. Open Forum Infect. Dis. 7, S666–S667 (2020).

    Article  PubMed Central  Google Scholar 

  92. Cai, H. et al. Characterization of tissue distribution, catabolism and elimination of an anti-Staphylococcus aureus THIOMABTM antibody-antibiotic conjugate in rats. Drug Metab. Dispos. 48, 1161–1168 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Deng, R. et al. Preclinical and translational pharmacokinetics of a novel THIOMABTM antibody-antibiotic conjugate against Staphylococcus aureus. mAbs 11, 1162–1174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stagg, N. J. et al. Nonclinical toxicology development of a novel antibody antibiotic conjugate for treating invasive Staphylococcus aureus infections. Toxicol. Appl. Pharm. 435, 115811 (2022).

    Article  CAS  Google Scholar 

  95. Zacharias, N. et al. A homogeneous high-DAR antibody–drug conjugate platform combining THIOMAB antibodies and XTEN polypeptides. Chem. Sci. 13, 3147–3160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McCallin, S., Sacher, J. C., Zheng, J. & Chan, B. K. Current state of compassionate phage therapy. Viruses 11, 343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hyman, P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 12, 35 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Eliava Institute https://eliava-institute.org/?lang=en.

  99. Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Łusiak-Szelachowska, M. & Górski, A. Phage therapy in Poland — a centennial journey to the first ethically approved treatment facility in Europe. Front. Microbiol. 11, 1056 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nick, J. A. et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 185, 1860–1874.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. LaVergne, S. et al. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect. Dis. 5, ofy064 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Article  PubMed  Google Scholar 

  104. Sarker, S. A. et al. Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh. Env. Microbiol. 19, 237–250 (2017).

    Article  CAS  Google Scholar 

  105. Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. Ebiomedicine 4, 124–137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2020).

    Article  PubMed  Google Scholar 

  107. Górski, A., Borysowski, J. & Międzybrodzki, R. Phage therapy: towards a successful clinical trial. Antibiotics 9, 827 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Melo, L. D. R., Oliveira, H., Pires, D. P., Dabrowska, K. & Azeredo, J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit. Rev. Microbiol. 46, 78–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Oechslin, F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10, 351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rodríguez-Rubio, L., Jofre, J. & Muniesa, M. Is genetic mobilization considered when using bacteriophages in antimicrobial therapy? Antibiotics 6, 32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pires, D. P., Costa, A. R., Pinto, G., Meneses, L. & Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 44, 684–700 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Nagel, T. et al. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Curr. Opin. Virol. 53, 101208 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 8, 769–783 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Lehman, S. M. et al. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses 11, 88 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Molina, F. et al. A new pipeline for designing phage cocktails based on phage-bacteria infection networks. Front. Microbiol. 12, 564532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Barbu, E. M., Cady, K. C. & Hubby, B. Phage therapy in the era of synthetic biology. Cold Spring Harb. Perspect. Biol. 8, a023879 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotech. 68, 151–159 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Egido, J. E., Costa, A. R., Aparicio-Maldonado, C., Haas, P.-J. & Brouns, S. J. J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol. Rev. 46, fuab048 (2021).

    Article  PubMed Central  Google Scholar 

  119. Chen, M. et al. Alterations in gp37 expand the host range of a T4-like phage. Appl. Environ. Microb. 83, e01576-17 (2017).

    Article  Google Scholar 

  120. Mahichi, F., Synnott, A. J., Yamamichi, K., Osada, T. & Tanji, Y. Site‐specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett. 295, 211–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Yoichi, M., Abe, M., Miyanaga, K., Unno, H. & Tanji, Y. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J. Biotechnol. 115, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Burrowes, B. H., Molineux, I. J. & Fralick, J. A. Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses 11, 241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yehl, K. et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179, 459–469.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, B., Niu, Y., Ji, W. & Dong, Y. Strategies for the CRISPR-based therapeutics. Trends Pharmacol. Sci. 41, 55–65 (2020).

    Article  PubMed  Google Scholar 

  125. Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Bikard, D. et al. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol. 32, 1146–1150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goren, M., Yosef, I. & Qimron, U. Sensitizing pathogens to antibiotics using the CRISPR-Cas system. Drug Resist. Updat. 30, 1–6 (2017).

    Article  PubMed  Google Scholar 

  130. Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, B., Guo, F., Dong, S.-H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15, 111–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Murray, E., Draper, L. A., Ross, R. P. & Hill, C. The advantages and challenges of using endolysins in a clinical setting. Viruses 13, 680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schuch, R. et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J. Infect. Dis. 209, 1469–1478 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Fowler, V. G. Jr. et al. Exebacase for Staphylococcus aureus bloodstream infection and endocarditis. J. Clin. Invest. 130, 3750–3760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gontijo, M. T. P., Jorge, G. P. & Brocchi, M. Current status of endolysin-based treatments against gram-negative bacteria. Antibiotics 10, 1143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shavrina, M. S. et al. In vitro study of the antibacterial effect of the bacteriophage T5 thermostable endolysin on Escherichia coli cells. J. Appl. Microbiol. 121, 1282–1290 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Ma, Q. et al. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Antonie Van Leeuwenhoek 110, 347–355 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Yang, H., Wang, M., Yu, J. & Wei, H. Antibacterial activity of a novel peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa. Front. Microbiol. 6, 1471 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Defraine, V. et al. Efficacy of artilysin art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob. Agents Chemother. 60, 3480–3488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, H. et al. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci. Rep. 5, 17257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Blázquez, B., Fresco-Taboada, A., Iglesias-Bexiga, M., Menéndez, M. & García, P. PL3 amidase, a tailor-made lysin constructed by domain shuffling with potent killing activity against pneumococci and related species. Front. Microbiol. 7, 1156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Crooke, S. T., Liang, X., Crooke, R. M., Baker, B. F. & Geary, R. S. Antisense drug discovery and development technology considered in a pharmacological context. Biochem. Pharmacol. 189, 114196 (2020).

    Article  PubMed  Google Scholar 

  144. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Santos, R. D. et al. Mipomersen, an antisense oligonucleotide to apolipoprotein b-100, reduces lipoprotein(a) in various populations with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 35, 689–699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bai, H. et al. Antisense antibiotics: a brief review of novel target discovery and delivery. Curr. Drug Discov. Technol. 7, 76–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Good, L., Sandberg, R., Larsson, O., Nielsen, P. E. & Wahlestedt, C. Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology 146, 2665–2670 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    Article  PubMed  Google Scholar 

  150. Geller, B. L. et al. Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother. 47, 3233–3239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bennett, C. F., Chiang, M. Y., Chan, H., Shoemaker, J. E. & Mirabelli, C. K. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides.Mol. Pharmacol. 41, 1023–1033 (1992).

    CAS  PubMed  Google Scholar 

  152. Chirila, T. V., Rakoczy, P. E., Garrett, K. L., Lou, X. & Constable, I. J. The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials 23, 321–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Falzarano, M. S., Passarelli, C. & Ferlini, A. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy. Nucleic Acid. Ther. 24, 87–100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. McClorey, G. & Banerjee, S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 6, 51 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ramsey, J. D. & Flynn, N. H. Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther. 154, 78–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Foged, C. & Nielsen, H. M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin. Drug Del. 5, 105–117 (2007).

    Article  Google Scholar 

  157. Lee, H.-M. et al. Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology. Commun. Biol. 4, 205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wesolowski, D., Alonso, D. & Altman, S. Combined effect of a peptide–morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic. Proc. Natl Acad. Sci. USA 110, 8686–8689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Geller, B. L. et al. Gene-silencing antisense oligomers inhibit Acinetobacter growth in vitro and in vivo. J. Infect. Dis. 208, 1553–1560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ghosal, A. & Nielsen, P. E. Potent antibacterial antisense peptide–peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid. Ther. 22, 323–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kurupati, P., Tan, K. S. W., Kumarasinghe, G. & Poh, C. L. Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant β-lactamase-producing Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 51, 805–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Hansen, A. M. et al. Antibacterial peptide nucleic acid–antimicrobial peptide (PNA–AMP) conjugates: antisense targeting of fatty acid biosynthesis. Bioconjug. Chem. 27, 863–867 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Ghosal, A., Vitali, A., Stach, J. E. M. & Nielsen, P. E. Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli. ACS Chem. Biol. 8, 360–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. García, V. et al. Genome-wide analysis of fitness-factors in uropathogenic Escherichia coli during growth in laboratory media and during urinary tract infections. Microb. Genom. 7, 000719 (2021).

    PubMed  PubMed Central  Google Scholar 

  166. Subashchandrabose, S. et al. Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 1, e00013-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Skurnik, D. et al. A comprehensive analysis of in vitro and in vivo genetic fitness of pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog. 9, e1003582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bai, H. et al. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials 33, 659–667 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Goh, S., Boberek, J. M., Nakashima, N., Stach, J. & Good, L. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One 4, e6061 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Popella, L. et al. Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic Escherichia coli. Nucleic Acids Res. 50, gkac362 (2022).

    Article  Google Scholar 

  171. Zhang, Y. & Cronan, J. E. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster. J. Bacteriol. 180, 3295–3303 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tilley, L. D. et al. Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: dose–response in mice infected with Escherichia coli. J. Antimicrob. Chemother. 59, 66–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Moustafa, D. A. et al. Peptide-conjugated phosphorodiamidate morpholino oligomers retain activity against multidrug-resistant Pseudomonas aeruginosa in vitro and in vivo. mBio 12, e02411-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Geller, B. L. et al. Morpholino oligomers tested in vitro, in biofilm and in vivo against multidrug-resistant Klebsiella pneumoniae. J. Antimicrob. Chemother. 73, 1611–1619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Silvis, M. R. et al. Morphological and transcriptional responses to CRISPRi knockdown of essential genes in Escherichia coli. mBio 12, e02561-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Greenberg, D. E. et al. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J. Infect. Dis. 201, 1822–1830 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Good, L. & Nielsen, P. E. Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl Acad. Sci. USA 95, 2073–2076 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lopez, C., Arivett, B. A., Actis, L. A. & Tolmasky, M. E. Inhibition of AAC(6′)-Ib-mediated resistance to amikacin in Acinetobacter baumannii by an antisense peptide-conjugated 2′,4′-bridged nucleic Acid-NC-DNA hybrid oligomer. Antimicrob. Agents Chemother. 59, 5798–5803 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Goh, S., Loeffler, A., Lloyd, D. H., Nair, S. P. & Good, L. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol. 15, 262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sully, E. K. et al. Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J. Antimicrob. Chemother. 72, 782–790 (2016).

    PubMed Central  Google Scholar 

  182. Daly, S. M., Sturge, C. R., Felder-Scott, C. F., Geller, B. L. & Greenberg, D. E. MCR-1 inhibition with peptide-conjugated phosphorodiamidate morpholino oligomers restores sensitivity to polymyxin in Escherichia coli. mBio 8, e01315-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Jani, S., Ramirez, M. S. & Tolmasky, M. E. Silencing antibiotic resistance with antisense oligonucleotides. Biomedicines 9, 416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, H. et al. oprM as a new target for reversion of multidrug resistance in Pseudomonas aeruginosa by antisense phosphorothioate oligodeoxynucleotides. FEMS Immunol. Med. Microbiol. 60, 275–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lamut, A., Mašič, L. P., Kikelj, D. & Tomašič, T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med. Res. Rev. 39, 2460–2504 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. MacNair, C. R. & Brown, E. D. Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio 11, e01615-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Reinisch, W. et al. Safety, pharmacokinetic, and pharmacodynamic study of sibofimloc, a novel FimH blocker in patients with active Crohn’s disease. J. Gastroenterol. Hepatol. 37, 832–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Wunderink, R. G. et al. Effect and safety of meropenem–vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect. Dis. Ther. 7, 439–455 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  193. Dsouza, M. et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 30, 583–598.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Feuerstadt, P., Allegretti, J. R. & Khanna, S. Practical use of rebyota for the prevention of recurrent Clostridioides difficile infection. Am. J. Gastroenterol. 118, 1303–1306 (2023).

    Article  PubMed  Google Scholar 

  195. Hurley, D. et al. Safety, tolerability, and immunogenicity of a 20-valent pneumococcal conjugate vaccine (PCV20) in adults 60 to 64 years of age. Clin. Infect. Dis. 73, ciaa1045 (2020).

    Google Scholar 

  196. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Emmerson, A. M. The quinolones: decades of development and use. J. Antimicrob. Chemother. 51, 13–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Brown, D. G., May-Dracka, T. L., Gagnon, M. M. & Tommasi, R. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J. Med. Chem. 57, 10144–10161 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Nikaido, H. & Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976).

    Article  CAS  PubMed  Google Scholar 

  203. Funahara, Y. & Nikaido, H. Asymmetric localization of lipopolysaccharides on the outer membrane of Salmonella typhimurium. J. Bacteriol. 141, 1463–1465 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Tsai for critically reading the manuscript and providing helpful comments. We also thank members of the Infectious Diseases department for their constructive discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.R.M. and S.T.R. wrote the manuscript with input from M.-W.T.

Corresponding author

Correspondence to Man-Wah Tan.

Ethics declarations

Competing interests

The authors are employees of Genentech Inc., which is a member of the Roche Group.

Peer review

Peer review information

Nature Reviews Microbiology thanks Ursula Theuretzbacher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacNair, C.R., Rutherford, S.T. & Tan, MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 22, 262–275 (2024). https://doi.org/10.1038/s41579-023-00993-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00993-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing