Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The human Y chromosome, in the light of evolution

Abstract

Most eukaryotic chromosomes, akin to messy toolboxes, store jumbles of genes with diverse biological uses. The linkage of a gene to a particular chromosome therefore rarely hints strongly at that gene's function. One striking exception to this pattern of gene distribution is the human Y chromosome. Far from being random and diverse, known human Y-chromosome genes show just a few distinct expression profiles. Their relative functional conformity reflects evolutionary factors inherent to sex-specific chromosomes.

Key Points

  • Sex chromosomes have arisen many times in the living world and show striking examples of convergent similarity that reflect shared evolutionary modes in the emergence and maintenance of chromosomal sex determination.

  • Owing to reduced recombination, sex-specific chromosomes tend to be small and gene-poor overall, but might be relatively enriched for genes specifically benefiting the sex that harbours them.

  • The human X and Y chromosomes are the best-characterized sex-chromosome system. They have progressively diverged from each other, via blockwise recession of their mutually recombining regions towards each telomere, probably mediated by large-scale inversions of intervening sequence on the Y chromosome in particular.

  • Studies of the human Y chromosome highlight the accumulation of spermatogenesis genes and the overall functional decay typical of male-specific chromosomes.

  • The known active genes on the non-recombining portion of the human Y chromosome sort neatly, on the basis of tissue expression and homology to the X chromosome, into three basic classes.

    Class 1: housekeeping genes that have withstood the overall decay of the Y chromosome, attesting to its ancient homology with the X chromosome, on which highly similar copies of these genes elude inactivation.

    Class 2: testis-specific genes — generally recruited to the Y chromosome by translocation or retroposition — that specifically benefit male fitness.

    Class 3: genes variously similar to both classes 1 and 2, as well as other genes that might be decaying towards pseudogene status, or the persistence of which might reflect additional evolutionary factors at work on the Y chromosome.

  • Genes that belong to classes 1 and 2 seem to underlie the medical disorders Turner syndrome and male infertility, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active genes on the human Y chromosome.
Figure 2: Sex chromosomes in mammals.
Figure 3: Human sex-chromosome evolution.
Figure 4: Example of a Y-chromosome-linked trait.
Figure 5: Amelogenin gene-splicing patterns.

Similar content being viewed by others

References

  1. Bull, J. J. Evolution of Sex Determining Mechanisms(Benjamin Cummings, Menlo Park, California, 1983).

    Google Scholar 

  2. Rappold, G. A. The pseudoautosomal regions of the human sex chromosomes. Hum. Genet. 92, 315–324 ( 1993).

    CAS  PubMed  Google Scholar 

  3. Graves, J. A. M., Wakefield, M. J. & Toder, R. The origin and evolution of the pseudoautosomal regions of human sex chromosomes. Hum. Mol. Genet. 7, 1991–1996 (1998).

    CAS  PubMed  Google Scholar 

  4. Henke, A., Fischer, C. & Rappold, G. A. Genetic map of the human pseudoautosomal region reveals a high rate of recombination in female meiosis at the Xp telomere. Genomics 18, 478–485 ( 1993).

    CAS  PubMed  Google Scholar 

  5. Lien, S., Szyda, J., Schechinger, B., Rappold, G. & Arnheim, N. Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am. J. Hum. Genet. 66 , 557–566 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ciccodicola, A. et al. Differentially regulated and evolved genes in the fully sequenced Xq/Yq pseudoautosomal region. Hum. Mol. Genet. 9, 395–401 (2000).

    CAS  PubMed  Google Scholar 

  7. Erlandsson, R., Wilson, J. F. & Paabo, S. Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol. Biol. Evol. 17, 804–812 ( 2000).

    CAS  PubMed  Google Scholar 

  8. Stevanovic, M., Lovell-Badge, R., Collignon, J. & Goodfellow, P. N. SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2013–2018 (1993).

    CAS  PubMed  Google Scholar 

  9. Foster, J. W. & Graves, J. A. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl Acad. Sci. USA 91, 1927 –1931 (1994).References 8 and 9 together identify SOX3 as the X-chromosome homologue of the male-determining gene SRY , and show that the SRY SOX3 split probably initiated the X–Y divergence in mammalian ancestors.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salido, E. C., Yen, P. H., Koprivnikar, K., Yu, L. C. & Shapiro, L. J. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am. J. Hum. Genet. 50, 303–316 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida, K. & Sugano, S. Identification of a novel protocadherin gene (PCDH11) on the human XY homology region in Xq21. 3. Genomics 62, 540–543 ( 1999).

    CAS  PubMed  Google Scholar 

  12. Blanco, P., Sargent, C. A., Boucher, C. A., Mitchell, M. & Affara, N. A. Conservation of PCDHX in mammals; expression of human X/Y genes predominantly in brain. Mamm. Genome 11, 906–914 ( 2000).

    CAS  PubMed  Google Scholar 

  13. Lahn, B. T. & Page, D. C. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum. Mol. Genet. 9, 311–319 (2000).

    CAS  PubMed  Google Scholar 

  14. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964– 967 (1999).This paper shows that X and Y chromosomes in the human lineage ceased to recombine with each other in progressive blocks during evolution.

    CAS  PubMed  Google Scholar 

  15. Korpelainen, H. Sex ratios and conditions required for environmental sex determination in animals. Biol. Rev. Camb. Phil. Soc. 65, 147–184 (1990).

    CAS  Google Scholar 

  16. Barlow, D. P. Imprinting: a gamete's point of view. Trends Genet. 10, 194–199 (1994).

    CAS  PubMed  Google Scholar 

  17. Graves, J. A. The origin and function of the mammalian Y chromosome and Y-borne genes — an evolving understanding. Bioessays 17, 311–320 (1995).

    CAS  PubMed  Google Scholar 

  18. Rice, W. R. Evolution of the Y sex chromosome in animals. BioScience 46, 331–343 (1996). A highly readable synopsis of how the lack of recombination can foster functional decay of the Y chromosome, including a thorough explanation of concepts such as Muller's ratchet.

    Google Scholar 

  19. Wilson, E. B. Studies on chromosomes. III. The sexual difference of chromosome-groups in Hemiptera, with some consideration on the determination and inheritance of sex. J. Exp. Zool. 2, 507– 545 (1906).

    Google Scholar 

  20. Muller, H. J. A gene for the fourth chromosome of Drosophila. J. Exp. Zool. 17, 325–336 ( 1914).

    Google Scholar 

  21. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964 ).

    Google Scholar 

  22. Charlesworth, B. Model for evolution of Y chromosomes and dosage compensation. Proc. Natl Acad. Sci. USA 75, 5618– 5622 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rice, W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116, 161– 167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen, P. et al. Population genetic implications from sequence variation in four Y chromosome genes. Proc. Natl Acad. Sci. USA 97, 7354–7359 (2000). This paper, from a research group which has made considerable use of non-genic non-recombining Y region (NRY) sequence variation to infer aspects of human population history, summarizes the current understanding of human Y-chromosome population genetics using new data on sequence variation in NRY genes themselves.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rice, W. R. Degeneration of a nonrecombining chromosome. Science 263, 230–232 (1994). Experimental evidence that the suppression of recombination is detrimental to the functional integrity of genes in diploid organisms.

    Article  CAS  PubMed  Google Scholar 

  26. Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science 278, 675– 680 (1997).Genes in the non-recombining region of the human Y chromosome conform to a small number of functional themes.

    CAS  PubMed  Google Scholar 

  27. Jegalian, K. & Page, D. C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394, 776–780 ( 1998).The degeneration of genes on the Y chromosome is probably what drives the corresponding X-chromosome homologues to become subject to X-chromosome inactivation.

    CAS  PubMed  Google Scholar 

  28. Brown, C. J., Carrel, L. & Willard, H. F. Expression of genes from the human active and inactive X chromosomes. Am. J. Hum. Genet. 60, 1333 –1343 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Delbridge, M. L., Lingenfeler, P. A., Disteche, C. M. & Graves, J. A. M. The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome . Nature Genet. 22, 223– 224 (1999).

    CAS  PubMed  Google Scholar 

  30. Mazeyrat, S., Saut, N., Mattei, M. & Mitchell, M. J. RBMY evolved on the Y chromosome from a ubiquitously transcribed X–Y identical gene . Nature Genet. 22, 224– 226 (1999).References 29 and 30 show that the testis-specific human Y-chromosome gene RBMY evolved from a widely expressed X–Y-chromosome homologous gene, demonstrating that Y-chromsome genes can acquire a testis-specific expression pattern during evolution.

    CAS  PubMed  Google Scholar 

  31. Mardon, G. & Page, D. C. The sex-determining region of the mouse Y chromosome encodes a protein with a highly acidic domain and 13 zinc fingers. Cell 56, 765–770 (1989).

    CAS  PubMed  Google Scholar 

  32. Odorisio, T., Mahadevaiah, S. K., McCarrey, J. R. & Burgoyne, P. S. Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are co-expressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes . Dev. Biol. 180, 336–343 (1996).

    CAS  PubMed  Google Scholar 

  33. Brown, G. M. et al. Characterisation of the coding sequence and fine mapping of the human DFFRY gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene. Hum. Mol. Genet. 7, 97– 107 (1998).

    CAS  PubMed  Google Scholar 

  34. Reijo, R. et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nature Genet. 10, 383–393 ( 1995).

    CAS  PubMed  Google Scholar 

  35. Saxena, R. et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nature Genet. 14, 292–299 (1996).

    CAS  PubMed  Google Scholar 

  36. Lahn, B. T. & Page, D. C. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nature Genet. 21, 429–433 ( 1999).References 35 and 36 show that some testis-specific genes on the human Y chromosome are transposed copies of autosomal genes.

    CAS  PubMed  Google Scholar 

  37. Bridges, C. B. Non-disjunction as proof of the chromosome theory of heredity (concluded) . Genetics 1, 107–163 (1916).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tiepolo, L. & Zuffardi, O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 34, 119– 124 (1976).

    CAS  PubMed  Google Scholar 

  39. Hardy, R. W., Tokuyasu, K. T. & Lindsley, D. L. Analysis of spermatogenesis in Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. Chromosoma 83, 593–617 ( 1981).

    CAS  PubMed  Google Scholar 

  40. Levy, E. R. & Burgoyne, P. S. The fate of XO germ cells in the testes of XO/XY and XO/XY/XYY mouse mosaics: evidence for a spermatogenesis gene on the mouse Y chromosome. Cytogenet. Cell Genet. 42, 208–213 (1986).

    CAS  PubMed  Google Scholar 

  41. Bishop, C. E. Mouse Y chromosome. Mamm. Genome 3, S289 –S293 (1992).

    CAS  PubMed  Google Scholar 

  42. Gepner, J. & Hays, T. S. A fertility region on the Y chromosome of Drosophila melanogasterencodes a dynein microtubule motor. Proc. Natl Acad. Sci. USA 90, 11132– 11136 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, K. et al. A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 75, 1287–1295 ( 1993).

    CAS  PubMed  Google Scholar 

  44. Vogt, P. H. et al. Human Y chromosome azoospermia factor (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 5, 933–943 (1996).This paper describes several regions of the human Y chromosome that are critically involved in spermatogenesis.

    CAS  PubMed  Google Scholar 

  45. Zhang, P. & Stankiewicz, R. L. Y-Linked male sterile mutations induced by P element in Drosophila melanogaster. Genetics 150, 735–744 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher, R. A. The evolution of dominance. Biol. Rev. 6, 345–368 (1931).

    Google Scholar 

  47. Brooks, R. Negative genetic correlation between male sexual attractiveness and survival . Nature 406, 67–70 (2000).

    CAS  PubMed  Google Scholar 

  48. Salo, P. et al. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome. Genes Chromosomes Cancer 14, 210–214 (1995).

    CAS  PubMed  Google Scholar 

  49. Tsuchiya, K., Reijo, R., Page, D. C. & Disteche, C. M. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome. Am. J. Hum. Genet. 57, 1400–1407 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Metz, E. C. & Palumbi, S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13, 397– 406 (1996).

    CAS  PubMed  Google Scholar 

  51. Ting, C. T., Tsaur, S. C., Wu, M. L. & Wu, C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501–1504 (1998).

    CAS  PubMed  Google Scholar 

  52. Wyckoff, G. J., Wang, W. & Wu, C. I. Rapid evolution of male reproductive genes in the descent of man. Nature 403, 304–309 ( 2000).References 50 52 provide intriguing evidence from diverse taxa that male reproductive proteins might evolve relatively rapidly compared with most other proteins.

    CAS  PubMed  Google Scholar 

  53. Gillespie, J. H. Population Genetics: A Concise Guide(Johns Hopkins Univ. Press, Baltimore, Maryland, 1998).

    Google Scholar 

  54. Foote, S., Vollrath, D., Hilton, A. & Page, D. C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66 ( 1992).

    CAS  PubMed  Google Scholar 

  55. Vollrath, D. et al. The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science 258, 52– 59 (1992).

    CAS  PubMed  Google Scholar 

  56. Yi, S. & Charlesworth, B. Contrasting patterns of molecular evolution of the genes on the new and old sex chromosomes of Drosophila miranda. Mol. Biol. Evol. 17, 703– 717 (2000).

    CAS  PubMed  Google Scholar 

  57. Spencer, J. A., Sinclair, A. H., Watson, J. M. & Graves, J. A. Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics 11, 339–345 (1991).

    CAS  PubMed  Google Scholar 

  58. Watson, J. M., Spencer, J. A., Riggs, A. D. & Graves, J. A. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal. Proc. Natl Acad. Sci. USA 88, 11256–11260 ( 1991).This paper shows that there was a large translocation from autosome to sex chromosome in an ancestor of placental mammals, resulting in great enlargement of the placental sex chromosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Turner, H. H. A syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology 23, 566–574 (1938).

    Google Scholar 

  60. Ferguson-Smith, M. A. Karyotype–phenotype correlations in gonadal dysgenesis and their bearing on the pathogenesis of malformations. J. Med. Genet. 2, 142–155 (1965). A classic paper that puts forward the hypothesis that Turner syndrome is due to haploinsufficiency of XY-chromosome-common genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zinn, A. R., Page, D. C. & Fisher, E. M. Turner syndrome: the case of the missing sex chromosome . Trends Genet. 9, 90–93 (1993).

    CAS  PubMed  Google Scholar 

  62. Hook, E. B. & Warburton, D. The distribution of chromosomal genotypes associated with Turner's syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum. Genet. 64, 24–27 (1983).

    CAS  PubMed  Google Scholar 

  63. Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nature Genet. 16, 54–63 (1997).

    CAS  PubMed  Google Scholar 

  64. Ellison, J. W. et al. PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum. Mol. Genet. 6, 1341–1347 (1997).

    CAS  PubMed  Google Scholar 

  65. Hull, M. G. et al. Population study of causes, treatment, and outcome of infertility . Br. Med. J. (Clin. Res. Ed.) 291, 1693 –1697 (1985).

    CAS  Google Scholar 

  66. Sun, C. et al. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nature Genet. 23, 429–432 (1999).

    CAS  PubMed  Google Scholar 

  67. Foresta, C., Ferlin, A. & Moro, E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility . Hum. Mol. Genet. 9, 1161– 1169 (2000).

    CAS  PubMed  Google Scholar 

  68. Bullejos, M., Sanchez, A., Burgos, M., Jimenez, R. & Diaz De La Guardia, R. Multiple mono- and polymorphic Y-linked copies of the SRY HMG-box in microtidae. Cytogenet. Cell Genet. 86, 46–50 ( 1999).

    CAS  PubMed  Google Scholar 

  69. Moradian-Oldak, J. et al. A review of the aggregation properties of a recombinant amelogenin . Connect. Tissue Res. 32, 125– 130 (1995).

    CAS  PubMed  Google Scholar 

  70. Fincham, A. G., Moradian-Oldak, J. & Simmer, J. P. The structural biology of the developing dental enamel matrix. J. Struct. Biol. 126, 270– 299 (1999).

    CAS  PubMed  Google Scholar 

  71. Nakahori, Y., Takenaka, O. & Nakagome, Y. A human X–Y homologous region encodes 'amelogenin' . Genomics 9, 264–269 (1991).

    CAS  PubMed  Google Scholar 

  72. Watson, J. M., Spencer, J. A., Graves, J. A., Snead, M. L. & Lau, E. C. Autosomal localization of the amelogenin gene in monotremes and marsupials: implications for mammalian sex chromosome evolution. Genomics 14, 785– 789 (1992).

    CAS  PubMed  Google Scholar 

  73. Samonte, R. V., Conte, R. A. & Verma, R. S. Molecular phylogenetics of the hominoid Y chromosome . J. Hum. Genet. 43, 185– 186 (1998).

    CAS  PubMed  Google Scholar 

  74. Alvesalo, L. Sex chromosomes and human growth. A dental approach. Hum. Genet. 101, 1–5 (1997 ).

    CAS  PubMed  Google Scholar 

  75. Ravassipour, D. B. et al. Unique enamel phenotype associated with amelogenin gene ( AMELX) codon 41 point mutation. J. Dent. Res. 79 , 1476–1481 (2000).

    CAS  PubMed  Google Scholar 

  76. Yamauchi, K. et al. Sex determination based on fecal DNA analysis of the amelogenin gene in sika deer (Cervus nippon). J. Vet. Med. Sci. 62, 669–671 (2000).

    CAS  PubMed  Google Scholar 

  77. Haig, D. Intragenomic conflict and the evolution of eusociality. J. Theor. Biol. 156, 401–403 ( 1992).

    CAS  PubMed  Google Scholar 

  78. Hurst, L. D. Is multiple paternity necessary for the evolution of genomic imprinting? Genetics 153, 509–512 ( 1999).References 77 and 78 represent, respectively, a statement of the original sexual antagonism model of genomic imprinting, and thoughtful secondary theoretical work exploring that model's assumptions and implications.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, P. C. in Comparative Primate Socioecology(ed. Lee, P. C.) (Cambridge Univ. Press, Cambridge, UK, 1999).

    Google Scholar 

  80. Mooney, M. P., Siegel, M. I., Eichberg, J. W., Lee, D. R. & Swan, J. Deciduous dentition eruption sequence of the laboratory-reared chimpanzee (Pan troglodytes). J. Med. Primatol. 20, 138–139 (1991).

    CAS  PubMed  Google Scholar 

  81. Kuykendall, K. L., Mahoney, C. J. & Conroy, G. C. Probit and survival analysis of tooth emergence ages in a mixed-longitudinal sample of chimpanzees (Pan troglodytes). Am. J. Phys. Anthropol. 89, 379–399 (1992).

    CAS  PubMed  Google Scholar 

  82. Kaul, S. S., Pathak, R. K. & Santosh Emergence of deciduous teeth in Punjabi children, north India. Z. Morphol. Anthropol. 79, 25–34 (1992).

    CAS  PubMed  Google Scholar 

  83. Rajic, Z., Rajic Mestrovic, S. & Vukusic, N. Chronology, dynamics and period of primary tooth eruption in children from Zagreb, Croatia. Coll. Antropol. 23 , 659–663 (1999).

    CAS  PubMed  Google Scholar 

  84. Alvesalo, L., Osborne, R. H. & Kari, M. The 47,XYY male, Y chromosome, and tooth size. Am. J. Hum. Genet. 27, 53–61 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Iwasa, Y. & Pomiankowski, A. Sex specific X chromosome expression caused by genomic imprinting. J. Theor. Biol. 197, 487–495 (1999).

    CAS  PubMed  Google Scholar 

  86. Hurst, L. D. Embryonic growth and the evolution of the mammalian Y chromosome. I. The Y as an attractor for selfish growth factors. Heredity 73, 223–232 (1994).

    PubMed  Google Scholar 

  87. Hurst, L. D. Embryonic growth and the evolution of the mammalian Y chromosome. II. Suppression of selfish Y-linked growth factors may explain escape from X-inactivation and rapid evolution of Sry. Heredity 73, 233–243 (1994).

    PubMed  Google Scholar 

  88. Veis, A. et al. Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J. Biol. Chem. 275, 41263–41272 ( 2000).

    CAS  PubMed  Google Scholar 

  89. Marks, S.C. Jr The basic and applied biology of tooth eruption. Connect. Tissue Res. 32, 149–157 ( 1995).

    PubMed  Google Scholar 

  90. Santos, F. R., Pandya, A. & Tyler-Smith, C. Reliability of DNA-based sex tests. Nature Genet. 18, 103 (1998).

  91. Kogan, G. L., Epstein, V. N., Aravin, A. A. & Gvozdev, V. A. Molecular evolution of two paralogous tandemly repeated heterochromatic gene clusters linked to the X and Y chromosomes of Drosophila melanogaster. Mol. Biol. Evol. 17, 697–702 (2000).

    CAS  PubMed  Google Scholar 

  92. Hurst, L. D. Is Stellate a relict meiotic driver? Genetics 130, 229–230 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palumbo, G., Bonaccorsi, S., Robbins, L. G. & Pimpinelli, S. Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics 138, 1181–1197 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hurst, L. D. Further evidence consistent with Stellate's involvement in meiotic drive. Genetics 142, 641–643 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hurst, L. D. Evolution. Sex, slime and selfish genes. Nature 354 , 23–24 (1991).

    CAS  PubMed  Google Scholar 

  96. Yen, P. H. et al. Cloning and expression of steroid sulfatase cDNA and the frequent occurrence of deletions in STS deficiency: implications for X–Y interchange . Cell 49, 443–454 (1987).

    CAS  PubMed  Google Scholar 

  97. del Castillo, I., Cohen-Salmon, M., Blanchard, S., Lutfalla, G. & Petit, C. Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome. Nature Genet. 2, 305–310 (1992).

    CAS  PubMed  Google Scholar 

  98. Ballabio, A. et al. Deletions of the steroid sulphatase gene in 'classical' X-linked ichthyosis and in X-linked ichthyosis associated with Kallmann syndrome. Hum. Genet. 77, 338–341 (1987).

    CAS  PubMed  Google Scholar 

  99. Li, X. M., Yen, P. H. & Shapiro, L. J. Characterization of a low copy repetitive element S232 involved in the generation of frequent deletions of the distal short arm of the human X chromosome. Nucleic Acids Res. 20 , 1117–1122 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Filippi, G. & Meera Khan, P. Linkage studies on X-linked ichthyosis in Sardinia. Am. J. Hum. Genet. 20, 564– 569 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Went, L. N., De Groot, W. P., Sanger, R., Tippett, P. & Gavin, J. X-linked ichthyosis: linkage relationship with the Xg blood groups and other studies in a large Dutch kindred. Ann. Hum. Genet. 32, 333–345 (1969).

    CAS  PubMed  Google Scholar 

  102. Adam, A. Sex ratio in families with X-linked ichthyosis. Am. J. Hum. Genet. 32, 763–764 ( 1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gladstien, K., Shapiro, L. J. & Spence, M. A. Estimating sex ratio biases in X-linked disorders: is there an excess of males in families with X-linked ichthyosis? Am. J. Hum. Genet. 31, 741–746 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Naumova, A. & Sapienza, C. The genetics of retinoblastoma, revisited. Am. J. Hum. Genet. 54, 264– 273 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nopoulos, P., Flaum, M., O'Leary, D. & Andreasen, N. C. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res. 98, 1–13 (2000).

    CAS  PubMed  Google Scholar 

  106. Schwartz, A. et al. Reconstructing hominid Y evolution: X-homologous block, created by X–Y transposition, was disrupted by Yp inversion through LINE–LINE recombination. Hum. Mol. Genet. 7, 1– 11 (1998).

    CAS  PubMed  Google Scholar 

  107. Dobzhansky, T. G. Genetic Diversity and Human Equality(Basic Books, New York, New York, 1973).

    Google Scholar 

  108. Archidiacono, N. et al. Evolution of chromosome Y in primates. Chromosoma 107, 241–246 ( 1998).

    CAS  PubMed  Google Scholar 

  109. Murphy, W. J. et al. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res. 9, 1223–1230 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ravindranath, R. M., Tam, W. Y., Nguyen, P. & Fincham, A. G. The enamel protein amelogenin binds to the N-acetyl-D-glucosamine-mimicking peptide motif of cytokeratins. J. Biol. Chem. 275, 39654–39661 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Charlesworth, S. Dorus, R. Hudson, M. Kreitman, E. Stahl, A. Veis, G. Wyckoff and S. Yi for stimulating discussion; G. Wyckoff for computational support; and C. Andrews and J. Socha for help with the guppies.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

SYBL1

HSPRY3

SRY

SOX3

AMELY

PCDHY

AMELX

PCDHX

RBMY

VCY

RBMX

VCX

Zfy

Ube1y

Usp9y

CDY

DAZ

CDYL

DAZL

Turner syndrome

male infertility

SHOX

AZF

DBY

Stellate

crystal

FURTHER INFORMATION

Human Genome Project

Glossary

DIOECIOUS

Having separate male and female organisms.

BIPOTENTIAL GONAD

The last embryonic tissue precursor that can differentiate into either the ovary or the testis.

CLADE

An organismal lineage comprising an ancestor and all its descendants.

HOMEOTHERM

An organism that uses cellular metabolism specifically to stabilize its own body temperature.

PENETRANCE

The frequency of affected individuals among the carriers of a particular genotype.

MEROHAPLODIPLOID

Characterized by one sex lacking part, but less than half, of the diploid chromosome set typical of the other sex.

GENETIC DRIFT

The random fluctuation of allele frequencies across generations in a finite population.

EFFECTIVE POPULATION SIZE (Ne).

The theoretical number of organisms or copies of a locus for which the genetic variation in a given sample of the organisms or copies can be explained solely by mutation and genetic drift; Ne is related to, but never exceeds, the actual population size (N).

PARALOGUE

A locus that is homologous to another within the same haploid genome.

MARSUPIAL

Non-placental mammal whose liveborn young suckle in maternal pouches.

HAPLORHINE

A member of the clade comprising apes, monkeys and tarsiers only.

POLYANDRY

A population mating structure in which a female might mate with multiple males during her lifetime.

MEIOTIC DRIVE

Preferential transmission of one gamete genotype over another genotype, in which the genotypes in question might derive from the same meiosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahn, B., Pearson, N. & Jegalian, K. The human Y chromosome, in the light of evolution. Nat Rev Genet 2, 207–216 (2001). https://doi.org/10.1038/35056058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35056058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing