Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantitative approaches in developmental biology

Key Points

  • Understanding complex systems such as developing embryos requires quantitative approaches.

  • Mathematical models of developmental processes have provided insight into mechanisms and suggested new experimental directions. Quantitative data are required to precisely define the developing system and to test mathematical models.

  • Dynamic, quantitative imaging of embryonic development is an important source of data, which are now available through developments in microscopy and image analysis.

  • The formation of an exponential morphogen gradient across a tissue can be understood through mathematical models in terms of three fundamental processes: the flux of morphogen from the source, the diffusion coefficient of the morphogen and the degradation rate of the morphogen.

  • The precision with which gradients can specify positional information is not yet understood; secondary responses from the patterned tissue may be required.

  • Cells not only exert forces on their environment, but are also able to respond to mechanical stimuli from their environment and to translate these stimuli into biochemical signals controlling cell fate specification, proliferation and survival.

  • The relationship between the bulk material properties of the tissue and the individual properties of the cells is not well understood; different tissues may have different contributions from these properties.

  • The rhythmic patterning of somitogenesis can be understood through mathematical models as the coordinated output of coupled cellular oscillators.

  • The origin of the oscillatory instability and the spatial control of the oscillators' arrest are not yet understood.

  • Progress in quantitative developmental biology will depend on collaboration between experimentalists and theorists with contributions from biology, physics, engineering and computer science.

Abstract

The tissues of a developing embryo are simultaneously patterned, moved and differentiated according to an exchange of information between their constituent cells. We argue that these complex self-organizing phenomena can only be fully understood with quantitative mathematical frameworks that allow specific hypotheses to be formulated and tested. The quantitative and dynamic imaging of growing embryos at the molecular, cellular and tissue level is the key experimental advance required to achieve this interaction between theory and experiment. Here we describe how mathematical modelling has become an invaluable method to integrate quantitative biological information across temporal and spatial scales, serving to connect the activity of regulatory molecules with the morphological development of organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Precision of morphogen gradients.
Figure 2: Mechanical cues in cell fate specification.
Figure 3: Tensile forces acting on germ layer organization.
Figure 4: Cell rearrangements and cell shape changes drive morphogenesis.
Figure 5: Somitogenesis and the segmentation clock.

Similar content being viewed by others

References

  1. Amonlirdviman, K. et al. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307, 423–426 (2005).

    CAS  PubMed  Google Scholar 

  2. Gibson, M. C., Patel, A. B., Nagpal, R. & Perrimon, N. The emergence of geometric order in proliferating metazoan epithelia. Nature 442, 1038–1041 (2006).

    CAS  PubMed  Google Scholar 

  3. Jonsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M. & Mjolsness, E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1633–1638 (2006).

    PubMed  PubMed Central  Google Scholar 

  4. Lewis, J. From signals to patterns: space, time, and mathematics in developmental biology. Science 322, 399–403 (2008).

    CAS  PubMed  Google Scholar 

  5. Tomlin, C. J. & Axelrod, J. D. Biology by numbers: mathematical modelling in developmental biology. Nature Rev. Genet. 8, 331–340 (2007).

    CAS  PubMed  Google Scholar 

  6. Reeves, G. T., Muratov, C. B., Schupbach, T. & Shvartsman, S. Y. Quantitative models of developmental pattern formation. Dev. Cell 11, 289–300 (2006).

    CAS  PubMed  Google Scholar 

  7. Cooper, W. J. & Albertson, R. C. Quantification and variation in experimental studies of morphogenesis. Dev. Biol. 321, 295–302 (2008).

    CAS  PubMed  Google Scholar 

  8. Turing, A. M. The chemical basis of morphogenesis. 1953. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Google Scholar 

  9. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS  PubMed  Google Scholar 

  10. Driever, W. & Nusslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    CAS  PubMed  Google Scholar 

  11. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Activin signalling and response to a morphogen gradient. Nature 371, 487–492 (1994).

    CAS  PubMed  Google Scholar 

  12. Tabata, T. & Takei, Y. Morphogens, their identification and regulation. Development 131, 703–712 (2004).

    CAS  PubMed  Google Scholar 

  13. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002).

    CAS  PubMed  Google Scholar 

  14. Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002).

    CAS  PubMed  Google Scholar 

  16. Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA 104, 3835–3840 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007). This paper uses FRAP to analyse the kinetic parameters of DPP and WG morphogen gradient formation. They show that endocytosis is necessary for the diffusion and degradation of DPP, but not of WG.

    CAS  PubMed  Google Scholar 

  18. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    CAS  PubMed  Google Scholar 

  19. Bourillot, P. Y., Garrett, N. & Gurdon, J. B. A changing morphogen gradient is interpreted by continuous transduction flow. Development 129, 2167–2180 (2002).

    CAS  PubMed  Google Scholar 

  20. Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002).

    CAS  PubMed  Google Scholar 

  22. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).

    CAS  PubMed  Google Scholar 

  23. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    CAS  PubMed  Google Scholar 

  24. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A. & Tabata, T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004).

    CAS  PubMed  Google Scholar 

  25. Kruse, K., Pantazis, P., Bollenbach, T., Julicher, F. & Gonzalez-Gaitan, M. Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856 (2004).

    CAS  PubMed  Google Scholar 

  26. Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004).

    CAS  PubMed  Google Scholar 

  27. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bollenbach, T. et al. Precision of the Dpp gradient. Development 135, 1137–1146 (2008).

    CAS  PubMed  Google Scholar 

  29. Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, D. W. & Wieschaus, E. F. Diffusion and scaling during early embryonic pattern formation. Proc. Natl Acad. Sci. USA 102, 18403–18407 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spirov, A. et al. Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development 136, 605–614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Precise domain specification in the developing Drosophila embryo. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 061920 (2005).

    CAS  PubMed  Google Scholar 

  32. Jaeger, J. et al. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167, 1721–1737 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaeger, J. & Reinitz, J. On the dynamic nature of positional information. Bioessays 28, 1102–1111 (2006).

    CAS  PubMed  Google Scholar 

  34. Jaeger, J., Sharp, D. H. & Reinitz, J. Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster. Mech. Dev. 124, 108–128 (2007).

    CAS  PubMed  Google Scholar 

  35. Kerszberg, M. & Wolpert, L. Specifying positional information in the embryo: looking beyond morphogens. Cell 130, 205–209 (2007).

    CAS  PubMed  Google Scholar 

  36. Bergmann, S. et al. Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS Biol. 5, e46 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Bergmann, S., Tamari, Z., Schejter, E., Shilo, B. Z. & Barkai, N. Re-examining the stability of the Bicoid morphogen gradient. Cell 132, 15–17; author reply 17–8 (2008).

    CAS  PubMed  Google Scholar 

  38. Dyson, S. & Gurdon, J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93, 557–568 (1998).

    CAS  PubMed  Google Scholar 

  39. Ingber, D. E. Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50, 255–266 (2006).

    PubMed  Google Scholar 

  40. Keller, R., Shook, D. & Skoglund, P. The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys. Biol. 5, 15007 (2008).

    Google Scholar 

  41. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    CAS  Google Scholar 

  42. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997). Provides direct experimental evidence that cell shape governs whether individual cells grow or die.

    CAS  PubMed  Google Scholar 

  43. Singhvi, R. et al. Engineering cell shape and function. Science 264, 696–698 (1994).

    CAS  PubMed  Google Scholar 

  44. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    CAS  PubMed  Google Scholar 

  45. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  PubMed  Google Scholar 

  46. Meyer, C. J. et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nature Cell Biol. 2, 666–668 (2000).

    CAS  PubMed  Google Scholar 

  47. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates Twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008).

    CAS  PubMed  Google Scholar 

  51. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

    CAS  PubMed  Google Scholar 

  52. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    CAS  PubMed  Google Scholar 

  53. Sultan, C., Stamenovic, D. & Ingber, D. E. A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann. Biomed. Eng. 32, 520–530 (2004).

    PubMed  Google Scholar 

  54. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963).

    CAS  PubMed  Google Scholar 

  55. Foty, R. A., Forgacs, G., Pfleger, C. M. & Steinberg, M. S. Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys. Rev. Lett. 72, 2298–2301 (1994).

    CAS  PubMed  Google Scholar 

  56. Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005).

    CAS  PubMed  Google Scholar 

  57. Foty, R. A., Pfleger, C. M., Forgacs, G. & Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996).

    CAS  PubMed  Google Scholar 

  58. Steinberg, M. S. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17, 281–286 (2007).

    CAS  PubMed  Google Scholar 

  59. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biol. 10, 429–436 (2008). Provides experimental support for the hypothesis that cell sorting in vitro and in vivo is determined by differences in cell cortex tension and adhesion.

    CAS  PubMed  Google Scholar 

  60. Ninomiya, H. & Winklbauer, R. Epithelial coating controls mesenchymal shape change through tissue-positioning effects and reduction of surface-minimizing tension. Nature Cell Biol. 10, 61–69 (2008).

    CAS  PubMed  Google Scholar 

  61. Glazier, J. A. & Graner, F. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, 2128–2154 (1993).

    CAS  PubMed  Google Scholar 

  62. Hilgenfeldt, S., Erisken, S. & Carthew, R. W. Physical modeling of cell geometric order in an epithelial tissue. Proc. Natl Acad. Sci. USA 105, 907–911 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kafer, J., Hayashi, T., Maree, A. F., Carthew, R. W. & Graner, F. Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc. Natl Acad. Sci. USA 104, 18549–18554 (2007).

    PubMed  PubMed Central  Google Scholar 

  64. Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    CAS  PubMed  Google Scholar 

  65. Glickman, N. S., Kimmel, C. B., Jones, M. A. & Adams, R. J. Shaping the zebrafish notochord. Development 130, 873–887 (2003).

    CAS  PubMed  Google Scholar 

  66. Keller, R. et al. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B 355, 897–922 (2000).

    CAS  Google Scholar 

  67. Shih, J. & Keller, R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901–914 (1992).

    CAS  PubMed  Google Scholar 

  68. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004). Provides experimental evidence for a crucial function of junctional remodelling in directing cellular rearrangements underlying germ band extension during D. melanogaster gastrulation.

    CAS  PubMed  Google Scholar 

  69. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    CAS  PubMed  Google Scholar 

  70. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    CAS  PubMed  Google Scholar 

  71. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biol. 10, 1401–1410 (2008).

    CAS  PubMed  Google Scholar 

  72. Zajac, M., Jones, G. L. & Glazier, J. A. Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000).

    CAS  PubMed  Google Scholar 

  73. Costa, M. et al. A putative catenin–cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dawes-Hoang, R. E. et al. folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    CAS  PubMed  Google Scholar 

  75. Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).

    CAS  PubMed  Google Scholar 

  76. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    PubMed  Google Scholar 

  77. Davidson, L. A., Koehl, M. A., Keller, R. & Oster, G. F. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018 (1995).

    CAS  PubMed  Google Scholar 

  78. Davidson, L. A., Oster, G. F., Keller, R. E. & Koehl, M. A. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209, 221–238 (1999).

    CAS  PubMed  Google Scholar 

  79. Odell, G. M., Oster, G., Alberch, P. & Burnside, B. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85, 446–462 (1981).

    CAS  PubMed  Google Scholar 

  80. Pouille, P. A. & Farge, E. Hydrodynamic simulation of multicellular embryo invagination. Phys. Biol. 5, 15005 (2008).

    Google Scholar 

  81. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009). Provides experimental evidence that pulsed contractions of an apical actomyosin network drive apical cell constriction during ventral furrow formation in D. melanogaster.

    CAS  PubMed  Google Scholar 

  82. Blanchard, G. B. et al. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nature Methods 6, 458–464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Butler, L. C. et al. Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germband extension. Nature Cell Biol. (in the press).

  84. Gorfinkiel, N., Blanchard, G. B., Adams, R. J. & Martinez-Arias, A. Mechanical control of global cell behaviour during dorsal closure in Drosophila. Development 136, 1889–1898 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McMahon, A., Supatto, W., Fraser, S. E. & Stathopoulos, A. Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322, 1546–1550 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Benko, R. & Brodland, G. W. Measurement of in vivo stress resultants in neurulation-stage amphibian embryos. Ann. Biomed. Eng. 35, 672–681 (2007).

    PubMed  Google Scholar 

  87. Zhou, J., Kim, H. Y. & Davidson, L. A. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136, 677–688 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003). Determines the relative contribution of forces generated in different tissues to dorsal closure in D. melanogaster.

    CAS  PubMed  Google Scholar 

  89. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Peralta X. G. et al. Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys. J. 92, 2583–2596 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dequeant, M. L. & Pourquie, O. Segmental patterning of the vertebrate embryonic axis. Nature Rev. Genet. 9, 370–382 (2008).

    CAS  PubMed  Google Scholar 

  92. Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    CAS  PubMed  Google Scholar 

  93. Schroter, C. et al. Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545–553 (2008).

    PubMed  Google Scholar 

  94. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    CAS  PubMed  Google Scholar 

  95. Goldbeter, A., Gonze, D. & Pourquie, O. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495–1508 (2007).

    CAS  PubMed  Google Scholar 

  96. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquie, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    CAS  PubMed  Google Scholar 

  97. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    CAS  PubMed  Google Scholar 

  98. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006). Visualizes segmentation clock gene expression in live embryos and shows the noisy oscillations of isolated clock cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003). Describes the most influential GRN model for how oscillations of the segmentation clock may arise from delays in transcriptional negative feedback loops.

    CAS  PubMed  Google Scholar 

  100. Monk, N. A. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003).

    CAS  PubMed  Google Scholar 

  101. Jensen, M. H., Sneppen, K. & Tiana, G. Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett. 541, 176–177 (2003).

    CAS  PubMed  Google Scholar 

  102. Hirata, H. et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nature Genet. 36, 750–754 (2004).

    CAS  PubMed  Google Scholar 

  103. Giudicelli, F., Ozbudak, E. M., Wright, G. J. & Lewis, J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol. 5, e150 (2007). Uses multiple techniques to estimate parameters, from the embryo, for a GRN model of the segmentation clock.

    PubMed  PubMed Central  Google Scholar 

  104. Jaeger, J. & Goodwin, B. C. A cellular oscillator model for periodic pattern formation. J. Theor. Biol. 213, 171–181 (2001).

    CAS  PubMed  Google Scholar 

  105. Kaern, M., Menzinger, M. & Hunding, A. Segmentation and somitogenesis derived from phase dynamics in growing oscillatory media. J. Theor. Biol. 207, 473–493 (2000).

    CAS  PubMed  Google Scholar 

  106. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719–723 (2006).

    CAS  PubMed  Google Scholar 

  107. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    CAS  PubMed  Google Scholar 

  108. Winfree, A. T. The Geometry of Biological Time 2nd edn (Springer, New York, 2001).

    Google Scholar 

  109. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  110. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Courier Dover Publications, Mineola, 2003).

    Google Scholar 

  111. Ozbudak, E. M. & Lewis, J. Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet. 4, e15 (2008).

    PubMed  PubMed Central  Google Scholar 

  112. Riedel-Kruse, I. H., Muller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007). Applies a physical theory of coupled phase oscillators to mutant phenotypes to estimate Notch coupling strength and total noise in the segmentation clock.

    CAS  PubMed  Google Scholar 

  113. Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nature Cell Biol. 10, 186–193 (2008).

    CAS  PubMed  Google Scholar 

  114. Morelli, L. G. et al. Delayed coupling theory of vertebrate segmentation. HFSP J. 3, 55–66 (2009).

    PubMed  Google Scholar 

  115. Noble, D. Modeling the heart — from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    CAS  PubMed  Google Scholar 

  116. Clancy, C. E. & Rudy, Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400, 566–569 (1999).

    CAS  PubMed  Google Scholar 

  117. Kohl, P. & Ravens, U. Cardiac mechano-electric feedback: past, present, and prospect. Prog. Biophys. Mol. Biol. 82, 3–9 (2003).

    PubMed  Google Scholar 

  118. England, S. J., Blanchard, G. B., Mahadevan, L. & Adams, R. J. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development 133, 4613–4617 (2006).

    CAS  PubMed  Google Scholar 

  119. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    CAS  PubMed  Google Scholar 

  120. Chuai, M. et al. Cell movement during chick primitive streak formation. Dev. Biol. 296, 137–149 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Newman, T. J. Grid-free models of multicellular systems, with an application to large-scale vortices accompanying primitive streak formation. Curr. Top. Dev. Biol. 81, 157–182 (2008).

    PubMed  Google Scholar 

  122. Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R. E. & Stern, C. D. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–1052 (2007).

    CAS  PubMed  Google Scholar 

  123. Bodenstein, L. & Stern, C. D. Formation of the chick primitive streak as studied in computer simulations. J. Theor. Biol. 233, 253–269 (2005).

    CAS  PubMed  Google Scholar 

  124. Bollenbach, T., Kruse, K., Pantazis, P., Gonzalez-Gaitan, M. & Julicher, F. Morphogen transport in epithelia. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 011901 (2007).

    CAS  PubMed  Google Scholar 

  125. Coppey, M., Berezhkovskii, A. M., Kim, Y., Boettiger, A. N. & Shvartsman, S. Y. Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. Dev. Biol. 312, 623–630 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Martinez-Arias for discussion and feedback during the preparation of this work, and members of our laboratories for comments and helpful discussion. We are grateful to J. de Navacsués for discussion and help with Box 2, J. Lewis, R. Kageyama, I. Riedel-Kruse, C. Eugster and D. Roellig for comments on an earlier version of the manuscript, and J.-L. Maitre for discussion. We also thank E. Farge and P.-A. Pouille for providing the images used in Fig. 4c.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew C. Oates or Carl-Philipp Heisenberg.

Related links

Related links

FURTHER INFORMATION

Andrew Oates' homepage

Marcos González-Gaitán's homepage

Carl-Philipp Heisenberg's homepage

Nature Reviews Genetics Series on Modelling

Glossary

Morphogen gradient

The morphogen gradient model proposes that undifferentiated cells in a developing tissue acquire information about their position in the field by reading the concentration of a substance (a morphogen), which is distributed in a spatial gradient of concentration.

Planar cell polarity

The polarization of many epithelial cells in the plane of the tissue.

Imaginal disc

Epithelial infoldings in the larvae of insects that are determined during the embryonic stage; they grow during the larval stage and finally develop into adult appendages during metamorphosis.

Phyllotaxis

The arrangement of leaves on the stem of a plant. Basic patterns are alternate, opposite, whorled and spiral.

Cell autonomous

A genetic trait in multicellular organisms in which only genotypically mutant cells exhibit the mutant phenotype.

Bottom-up modelling

A modelling approach wherein the microscopic dynamics of the individual constituents of a developing system is described as a function of the properties of each constituent and its relevant interactions with other constituents. Higher-level attributes of the system (emergent properties) are calculated from these interactions over time.

Markov chain model

A stochastic process such that, with the present state known, future states are independent of the past states. At each time step, the potential transition to the next state is drawn from a probability distribution.

Top-down modelling

A modelling approach wherein an empirical relationship between observable parameters is defined by starting with the higher-level properties of the developing system that may have a collective or statistical character, for example, differentiated cell states, tissue deformation or oscillation period. A top-down model does not require detailed knowledge of lower-level processes, such as gene expression or function.

Primordia

An organ or tissue in its earliest recognizable stage of development. The leaf and flower primordia arise from the shoot apical meristem in a process that is regulated by the hormone auxin.

Apical meristem

The tissue that is found at the growth tip of plants. It consists of completely undifferentiated cells, and is equivalent to stem cells in animals.

Elastic mechanics

The physical theory that deals with materials deforming under stress and returning to their original shape when the stress is removed, as typified by a spring.

Multiscale modelling

The integration of interactions between multiple levels of spatial or temporal organization, each with its own model substructure.

Genetic regulatory network

A common type of bottom-up model in which the emphasis is on rates of production of mRNA and proteins from genes in response to regulatory signals, leading to altered states of the network.

Cytoneme

A long, thin and polarized actin-based cytoplasmic extension with a diameter of approximately 0.2 μm that projects from a cell.

Focal adhesions

Large, dynamic protein complexes at the cell cortex through which the actin cytoskeleton of a cell connects to the extracellular matrix and transmits force. It is typically coordinated by the binding of cellular integrin transmembrane proteins to the matrix, which also act as integrin-regulated signalling centres.

Adherens junctions

Protein complexes at cell–cell junctions in epithelial tissues that link the actin cytoskeleton across the tissue and transmit force. They are mediated by cadherin transmembrane protein binding to cadherins at an opposing adherens junction on a neighbouring epithelial cell, and can act as cadherin-regulated signalling centres.

Tensegrity

Describes structures that stabilize their shape by continuous tension, and includes pre-stressed and geodesic classes. In the pre-stressed class, a pre-existing tensile stress or isometric tension distributed among embedded compressive elements holds the joints in position. In the geodesic class, structural members are triangulated and oriented along minimal paths to geometrically constrain movement. For a cell, the internal pre-stressed cytoskeleton interconnects at the cell periphery with a highly elastic, geodesic cytoskeletal network directly beneath the plasma membrane.

Cell cortex

A network of crosslinked actin filaments that is attached to the inner face of the plasma membrane and is able to contract through the action of myosin molecular motors.

Anisotropies

Differences in the value of a physical property of a material when measured along different axes.

Finite-element modelling

A numerical tool, widely used in engineering design and analysis, used to solve partial differential equations. It requires the subdivision of the system into discrete elements, which are analyzed separately in terms of the loads and displacements at the nodes.

Germ band extension

The morphogenetic process that occurs shortly after gastrulation in long germ band insects, in which the body axis is elongated through extensive cell intercalation in the epidermal epithelium.

Somites

Bilaterally symmetrical blocks of cells that are arranged in serial rows along the embryo. They give rise to the reiterated axial skeleton and associated musculature of the adult organism.

Mean field

An approximation from physics in which interactions between many components are replaced by interactions with a single component. Technically, all the components contribute to the generation of a mean field across the system, which in turn feeds back to each component to regulate its behaviour.

Selective plane illumination microscopy

An approach that combines two-dimensional laser illumination with orthogonal camera-based detection, thereby obtaining high-resolution, optical sectioning throughout an entire embryo. Advantages include minimal phototoxicity and speeds capable of capturing dynamic phenomena.

Two photon laser scanning microscopy

A fluorescence imaging technique that uses the simultaneous absorption of two low-energy photons to excite a fluorophore. The use of long wavelength excitation photons reduces scattering in biological material, allowing deeper tissue penetration. Additional advantages over conventional confocal microscopy are efficient light detection and reduced phototoxicity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oates, A., Gorfinkiel, N., González-Gaitán, M. et al. Quantitative approaches in developmental biology. Nat Rev Genet 10, 517–530 (2009). https://doi.org/10.1038/nrg2548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing