Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resistance to type 2 diabetes mellitus: a matter of hormesis?

Abstract

Type 2 diabetes mellitus is characterized by subclinical systemic inflammation and impaired regulation of blood glucose levels. Interestingly, impairment of glycemic control occurs despite substantial insulin secretion early in the course of this disease. Dysfunction of several organs (including pancreatic islets, liver, skeletal muscle, adipose tissue, gut, hypothalamus and the immune system) has been implicated in the pathogenesis of type 2 diabetes mellitus. However, diabetes-promoting lifestyle factors do not inevitably cause disease in all persons exposed. Hence, defense mechanisms must exist that can keep the detrimental influence of these risk factors at bay. Hormesis describes the phenomenon that exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This Review discusses the emerging concept that the effectiveness of an adaptive (hormetic) response to detrimental lifestyle factors determines the extent of protection from progression to type 2 diabetes mellitus. Further analysis of these protective hormetic responses at the molecular level should help to identify novel targets for preventive or therapeutic intervention in patients at risk of developing type 2 diabetes mellitus or those with overt disease.

Key Points

  • Not all persons exposed to diabetes-promoting lifestyle factors develop type 2 diabetes mellitus

  • Even individuals with obesity or metabolic syndrome might not progress to overt type 2 diabetes mellitus

  • Defense mechanisms must exist that maintain insulin sensitivity and/or pancreatic β-cell survival despite long-term metabolic stress

  • Such defense mechanisms comprise protective responses to inflammatory stress, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress

  • Defense responses exhibit properties of hormesis; for example, mild or transient stress induces an adaptive response that provides protection from increased, otherwise damaging stress

  • Pharmacological intervention might promote protective hormetic responses, which suggests novel research avenues for the prevention and/or treatment of type 2 diabetes mellitus

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hormetic response to signaling via TLR4.
Figure 2: Mitochondrial hormetic responses to increased oxidative stress.
Figure 3: The unfolded protein response—a hormetic response to endoplasmic reticulum stress.
Figure 4: Time course of β-cell gene expression during endoplasmic reticulum stress and recovery.

Similar content being viewed by others

References

  1. Kolb, H. & Mandrup-Poulsen, T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia 53, 10–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bonora, E. et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck study. Diabetes 47, 1643–1649 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrannini, E. et al. European Group for the Study of Insulin Resistance (EGIR). J. Clin. Invest. 100, 1166–1173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Primeau, V. et al. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. (Lond.) 35, 971–981 (2011).

    Article  CAS  Google Scholar 

  5. Velho, S., Paccaud, F., Waeber, G., Vollenweider, P. & Marques-Vidal, P. Metabolically healthy obesity: different prevalences using different criteria. Eur. J. Clin. Nutr. 64, 1043–1051 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Klöting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Calori, G. et al. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona study. Diabetes Care 34, 210–215 (2011).

    Article  PubMed  Google Scholar 

  8. Cnop, M. et al. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54 (Suppl. 2), S97–S107 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Matveyenko, A. V. & Butler, P. C. Relationship between β-cell mass and diabetes onset. Diabetes. Obes. Metab. 10 (Suppl. 4), 23–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Li, G. et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 371, 1783–1789 (2008).

    Article  PubMed  Google Scholar 

  12. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

  13. Calabrese, E. J. et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol. Appl. Pharmacol. 222, 122–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mohanty, P. et al. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J. Clin. Endocrinol. Metab. 85, 2970–2973 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Esposito, K. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 2067–2072 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Esposito, K. et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 78, 1135–1140 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Aljada, A. et al. Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am. J. Clin. Nutr. 79, 682–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. van Oostrom, A. J. et al. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 177, 175–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Devaraj, S., Wang-Polagruto, J., Polagruto, J., Keen, C. L. & Jialal, I. High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism 57, 867–870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dickinson, S., Hancock, D. P., Petocz, P., Ceriello, A. & Brand-Miller, J. High-glycemic index carbohydrate increases nuclear factor-κB activation in mononuclear cells of young, lean healthy subjects. Am. J. Clin. Nutr. 87, 1188–1193 (2008).

    CAS  PubMed  Google Scholar 

  21. Jin, M. S. & Lee, J. O. Structures of the Toll-like receptor family and its ligand complexes. Immunity 29, 182–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Weatherill, A. R. et al. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J. Immunol. 174, 5390–5397 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schaeffler, A. et al. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-κB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126, 233–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz, E. A. et al. Nutrient modification of the innate immune response: a novel mechanism by which saturated fatty acids greatly amplify monocyte inflammation. Arterioscler. Thromb. Vasc. Biol. 30, 802–808 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Medvedev, A. E., Sabroe, I., Hasday, J. D. & Vogel, S. N. Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J. Endotoxin. Res. 12, 133–150 (2006).

    CAS  PubMed  Google Scholar 

  27. Biswas, S. K. et al. Role for MyD88-independent, TRIF pathway in lipid A/TLR4-induced endotoxin tolerance. J. Immunol. 179, 4083–4092 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Piao, W. et al. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling. J. Leukoc. Biol. 86, 863–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ray, M. et al. Inhibition of TLR4-induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein. J. Immunol. 185, 7309–7316 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. North Am. 37, 635–646 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dasu, M. R., Devaraj, S., Zhao, L., Hwang, D. H. & Jialal, I. High glucose induces Toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57, 3090–3098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gubern, C. et al. Natural antibiotics and insulin sensitivity: the role of bactericidal/permeability-increasing protein. Diabetes 55, 216–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Harte, A. L. et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7, 15 (2010).

    Article  CAS  Google Scholar 

  35. Dasu, M. R., Devaraj, S., Park, S. & Jialal, I. Increased Toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33, 861–868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chacón, M. R. et al. Different TNFα expression elicited by glucose in monocytes from type 2 diabetes mellitus patients. Atherosclerosis 194, e18–e25 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, H. P., Kuo, S. F., Wu, S. Y. & Chuang, D. Y. High interleukin-12 production from stimulated peripheral blood mononuclear cells of type 2 diabetes patients. Cytokine 51, 298–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Bala, M. et al. Type 2 diabetes and lipoprotein metabolism affect LPS-induced cytokine and chemokine release in primary human monocytes. Exp. Clin. Endocrinol. Diabetes 119, 370–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Reyna, S. M. et al. Elevated Toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57, 2595–2602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Exel, E. et al. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes 51, 1088–1092 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Dasu, M. R. & Jialal, I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am. J. Physiol. Endocrinol. Metab. 300, E145–E154 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, H. J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Nappo, F. et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J. Am. Coll. Cardiol. 39, 1145–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Blackburn, P. et al. Postprandial variations of plasma inflammatory markers in abdominally obese men. Obesity (Silver Spring) 14, 1747–1754 (2006).

    Article  CAS  Google Scholar 

  45. Patel, C. et al. Prolonged reactive oxygen species generation and nuclear factor-κB activation after a high-fat, high-carbohydrate meal in the obese. J. Clin. Endocrinol. Metab. 92, 4476–4479 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kempf, K. et al. The metabolic syndrome sensitizes leukocytes for glucose-induced immune gene expression. J. Mol. Med. 85, 389–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez, F., Rote, N. S., Minium, J., O'leary, V. B. & Kirwan, J. P. Obese reproductive-age women exhibit a proatherogenic inflammatory response during hyperglycemia. Obesity (Silver Spring) 15, 2436–2444 (2007).

    Article  CAS  Google Scholar 

  48. Zacharioudaki, V. et al. Adiponectin promotes endotoxin tolerance in macrophages by inducing IRAK-M expression. J. Immunol. 182, 6444–6451 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Barbarroja, N. et al. The obese healthy paradox: is inflammation the answer? Biochem. J. 430, 141–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Lambert, A. J. & Brand, M. D. Reactive oxygen species production by mitochondria. Methods Mol. Biol. 554, 165–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C. & Fernandez-Checa, J. C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox. Signal. 11, 2685–2700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. El Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lambertucci, R. H. et al. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J. Cell Physiol. 216, 796–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Dasu, M. R., Devaraj, S. & Jialal, I. High glucose induces IL-1β expression in human monocytes: mechanistic insights. Am. J. Physiol. Endocrinol. Metab. 293, E337–E346 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Short, K. R. et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888–1896 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA 106, 8665–8670 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gomez-Cabrera, M. C. et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 87, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Strobel, N. A. et al. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med. Sci. Sports Exerc. 43, 1017–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Cheng, X., Siow, R. C. & Mann, G. E. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid. Redox. Signal. 14, 469–487 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, Z. et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia 54, 922–934 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ristow, M. & Zarse, K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410–418 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Gupte, A. A., Bomhoff, G. L., Swerdlow, R. H. & Geiger, P. C. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58, 567–578 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pallepati, P. & Averill-Bates, D. Mild thermotolerance induced at 40 degrees C increases antioxidants and protects HeLa cells against mitochondrial apoptosis induced by hydrogen peroxide: Role of p53. Arch. Biochem. Biophys. 495, 97–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell. Metab. 6, 280–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, S. J., Hwang, A. B. & Kenyon, C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 20, 2131–2136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schlotterer, A. et al. C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes 58, 2450–2456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boushel, R. et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50, 790–796 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bruce, C. R., Kriketos, A. D., Cooney, G. J. & Hawley, J. A. Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with type 2 diabetes. Diabetologia 47, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Hatunic, M., Burns, N., Finucane, F., Mannion, C. & Nolan, J. J. Contrasting clinical and cardiovascular risk status between early and later onset type 2 diabetes. Diab. Vasc. Dis. Res. 2, 73–75 (2005).

    Article  PubMed  Google Scholar 

  73. Song, S. H. & Hardisty, C. A. Early-onset type 2 diabetes mellitus: an increasing phenomenon of elevated cardiovascular risk. Expert Rev. Cardiovasc. Ther. 6, 315–322 (2008).

    Article  PubMed  Google Scholar 

  74. Hernández-Alvarez, M. I. et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 33, 645–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Burns, N. et al. Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in β cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training. Diabetologia 50, 1500–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Babraj, J. A. et al. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr. Disord. 9, 3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Frosig, C. & Richter, E. A. Improved insulin sensitivity after exercise: focus on insulin signaling. Obesity (Silver Spring) 17 (Suppl. 3), S15–S20 (2009).

    Article  CAS  Google Scholar 

  78. Olsen, D. B., Scheede-Bergdahl, C., Reving, D., Boushel, R. & Dela, F. The effect of rowing on endothelial function and insulin action in healthy controls and in patients with type 2 diabetes. Scand. J. Med. Sci. Sports 21, 420–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Meex, R. C. et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59, 572–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Phielix, E., Meex, R., Moonen-Kornips, E., Hesselink, M. K. & Schrauwen, P. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53, 1714–1721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thaler, J. P. & Schwartz, M. W. Minireview: inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology 151, 4109–4115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jordan, S. D., Konner, A. C. & Bruning, J. C. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell. Mol. Life Sci. 67, 3255–3273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wei, Y., Wang, D., Topczewski, F. & Pagliassotti, M. J. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab. 291, E275–E281 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Eizirik, D. L., Cardozo, A. K. & Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29, 42–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ceylan-Isik, A. F., Sreejayan, N. & Ren, J. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J. Mol. Cell Cardiol. 50, 107–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, J., Wang, J. J. & Zhang, S. X. Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1. J. Biol. Chem. 286, 4912–4921 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Harama, D. et al. A subcytotoxic dose of subtilase cytotoxin prevents lipopolysaccharide-induced inflammatory responses, depending on its capacity to induce the unfolded protein response. J. Immunol. 183, 1368–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Nakatani, Y. et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem. 280, 847–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Kammoun, H. L. et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ye, R. et al. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes 59, 6–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Latreille, M., Laberge, M. K., Bourret, G., Yamani, L. & Larose, L. Deletion of Nck1 attenuates hepatic ER stress signaling, improves glucose tolerance and insulin signaling in liver of obese mice. Am. J. Physiol. Endocrinol. Metab. 300, E423–E434 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, J. et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell. Metab. 13, 160–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Salminen, A. & Kaarniranta, K. ER stress and hormetic regulation of the aging process. Ageing Res. Rev. 9, 211–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Huang, C. J. et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56, 2016–2027 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Matveyenko, A. V., Gurlo, T., Daval, M., Butler, A. E. & Butler, P. C. Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced β-cell endoplasmic reticulum stress. Diabetes 58, 906–916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bellmann, K., Jäättelä, M., Wissing, D., Burkart, V. & Kolb, H. Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Lett. 391, 185–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Bellmann, K., Hui, L., Radons, J., Burkart, V. & Kolb, H. Low stress response enhances vulnerability of islet cells in diabetes-prone BB rats. Diabetes 46, 232–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Margulis, B. A., Sandler, S., Eizirik, D. L., Welsh, N. & Welsh, M. Liposomal delivery of purified heat shock protein hsp70 into rat pancreatic islets as protection against interleukin 1β-induced impaired β-cell function. Diabetes 40, 1418–1422 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Pirot, P., Eizirik, D. L. & Cardozo, A. K. Interferon-γ potentiates endoplasmic reticulum stress-induced death by reducing pancreatic β cell defence mechanisms. Diabetologia 49, 1229–1236 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Cunha, D. A. et al. Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell Sci. 121, 2308–2318 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Pirot, P. et al. Global profiling of genes modified by endoplasmic reticulum stress in pancreatic β cells reveals the early degradation of insulin mRNAs. Diabetologia 50, 1006–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eizirik, D. L. & Cnop, M. ER stress in pancreatic β cells: the thin red line between adaptation and failure. Sci. Signal. 3, pe7 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Hung., C. C., Ichimura, T., Stevens, J. L. & Bonventre, J. V. Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J. Biol. Chem. 278, 29317–29326 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Cunha, D. A. et al. Glucagon-like peptide-1 agonists protect pancreatic β-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851–2862 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yusta, B. et al. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell. Metab. 4, 391–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Johnson, J. D. et al. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 18, 833–845 (2009).

    Article  PubMed  Google Scholar 

  113. Vilsboll, T. The effects of glucagon-like peptide-1 on the β cell. Diab. Obes. Metab. 11 (Suppl. 3), 11–18 (2009).

    Article  CAS  Google Scholar 

  114. Ruderman, N. B. et al. AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298, E751–E760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gillum, M. P., Erion, D. M. & Shulman, G. I. Sirtuin-1 regulation of mammalian metabolism. Trends Mol. Med. 17, 8–13 (2010).

    Article  CAS  Google Scholar 

  116. Vetterli, L., Brun, T., Giovannoni, L., Bosco, D. & Maechler, P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E β-cells and human islets through a SIRT1-dependent mechanism. J. Biol. Chem. 286, 6049–6060 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Ling, Z., Van de Casteele, M., Eizirik, D. L. & Pipeleers, D. G. Interleukin-1β-induced alteration in a β-cell phenotype can reduce cellular sensitivity to conditions that cause necrosis but not to cytokine-induced apoptosis. Diabetes 49, 340–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Halban, P. A., German, M. S., Kahn, S. E. & Weir, G. C. Current status of islet cell replacement and regeneration therapy. J. Clin. Endocrinol. Metab. 95, 1034–1043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gianani, R. β cell regeneration in human pancreas. Semin. Immunopathol. 33, 23–27 (2011).

    Article  PubMed  Google Scholar 

  120. Eberhard, D., Kragl, M. & Lammert, E. 'Giving and taking': endothelial and β-cells in the islets of Langerhans. Trends Endocrinol. Metab. 21, 457–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. De Silva, N. M. & Frayling, T. M. Novel biological insights emerging from genetic studies of type 2 diabetes and related metabolic traits. Curr. Opin. Lipidol. 21, 44–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Smushkin, G. & Vella, A. Genetics of type 2 diabetes. Curr. Opin. Clin. Nutr. Metab. Care 13, 471–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Korsgren, O., Jansson, L., Sandler, S., & Andersson, A. Hyperglycemia-induced β cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J. Clin. Invest. 86, 2161–2168 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Peeters, A. V. et al. Association of SIRT1 gene variation with visceral obesity. Hum. Genet. 124, 431–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. van den Berg, S. W. et al. Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: a population-based cohort study. Int. J. Obes. (Lond.) 33, 1143–1152 (2009).

    Article  CAS  Google Scholar 

  126. Zillikens, M. C. et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 58, 2828–2834 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Weyrich, P. et al. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention—the TULIP Study. BMC Med. Genet. 9, 100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gouda, H. N. et al. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am. J. Epidemiol. 171, 645–655 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bao, W. et al. Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am. J. Epidemiol. 172, 631–636 (2010).

    Article  PubMed  Google Scholar 

  130. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell. Metab. 8, 157–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hardie, D. G. Sensing of energy and nutrients by AMP-activated protein kinase. Am. J. Clin. Nutr. 93, 891S–896S (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H. Kolb's research is supported by the Gesellschaft von Freunden und Förderern der Heinrich-Heine-Universität Düsseldorf. D. L. Eizirik's research work is supported by grants from the European Union (Projects Eurodia and Naimit within Framework Programs 6 and 7 of the European Community), Fonds National de la Recherche Scientifique, Actions de Recherche Concerteé de la Communauté Française, Belgium, and from the Program on Interuniversity Poles of Attraction initiated by the Belgian State (IUAP P5/17 and P6/40). The authors also thank M. L. Colli for preparing Figure 4.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Hubert Kolb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, H., Eizirik, D. Resistance to type 2 diabetes mellitus: a matter of hormesis?. Nat Rev Endocrinol 8, 183–192 (2012). https://doi.org/10.1038/nrendo.2011.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.158

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research