Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

siRNAs: applications in functional genomics and potential as therapeutics

Key Points

  • RNA interference (RNAi) is a post-transcriptional gene-silencing mechanism that utilizes short interfering RNAs (siRNAs) as effector molecules to guide target mRNA cleavage.

  • siRNA is a new class of nucleic-acid-based gene-silencing molecule that could be more potent than ribozymes and antisense oligonucleotides in silencing gene expression because it uses cellular machinery.

  • RNAi can be applied in mammalian cells through the application of a vector that transcribes a hairpin RNA that is processed into siRNAs in the cell, or by directly transfecting siRNA into cells.

  • The robustness of the RNAi approach has motivated numerous groups to conduct near-genome-wide screens in mammalian cells to identify and validate potential drug targets.

  • RNAi has become an alternative mode for studying gene function in mouse by either the creation of transgenic mice that express short hairpin RNAs or by local or systemic introduction of siRNA by various injection methods.

  • siRNAs have the potential for inducing non-specific and sequence-specific off-target effects if they are not properly selected and applied. New findings in the study of the mechanisms of RNAi have suggested rules for the selection of potent siRNA sequences.

  • Like ribozymes and ODNs, siRNAs are being developed for therapeutic applications. Along this line, numerous groups have identified chemical modifications that increase the stability of siRNAs, while maintaining a high gene-silencing efficiency.

Abstract

Molecules that can specifically silence gene expression are powerful research tools. Much effort has been put into the development of such molecules and has resulted in the creation of different classes of potential therapeutic agents. Small interfering RNA (siRNA) is one of the latest additions to the repertoire of sequence-specific gene-silencing agents. The robustness of this approach has motivated numerous biotechnology organizations and academic institutions to develop siRNA libraries for high-throughput genome-wide screening in mammalian cells. This article first overviews current nucleic-acid-based approaches for gene silencing, and then focuses on the application of siRNAs in particular in functional genomics and as potential therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of nucleic-acid-based approaches for gene silencing: RNA silencing.
Figure 2: Mechanisms of nucleic-acid-based approaches for gene silencing: antisense compounds.
Figure 3: Mechanisms of nucleic-acid-based approaches for gene silencing: ribozymes.
Figure 4: Features of efficient and specific siRNAs.
Figure 5: In vivo mammalian gene silencing.

Similar content being viewed by others

References

  1. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev. 15, 188–200 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  Google Scholar 

  3. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). The landmark paper describing the discovery of RNAi.

    CAS  PubMed  Google Scholar 

  4. Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959–13964 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    CAS  PubMed  Google Scholar 

  7. Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cogoni, C. & Macino, G. Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr. Opin. Microbiol. 2, 657–662 (1999).

    CAS  PubMed  Google Scholar 

  9. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 227–264 (1998).

  10. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    CAS  PubMed  Google Scholar 

  11. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    CAS  PubMed  Google Scholar 

  12. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 411, 494–498 (2001). The landmark paper describing the first application RNAi in mammalian cell culture.

    CAS  PubMed  Google Scholar 

  14. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol. 1, 34 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Scherer, L. J. & Rossi, J. J. Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnol. 21, 1457–1465 (2003). A comprehensive review comparing the different approaches for silencing of mRNA.

    CAS  Google Scholar 

  17. Braasch, D. A. & Corey, D. R. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 41, 4503–4510 (2002).

    CAS  PubMed  Google Scholar 

  18. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    CAS  PubMed  Google Scholar 

  19. Schubert, S. et al. RNA cleaving '10–23' DNAzymes with enhanced stability and activity. Nucleic Acids Res. 31, 5982–5992 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chakraborti, S. & Banerjea, A. C. Inhibition of HIV-1 gene expression by novel DNA enzymes targeted to cleave HIV-1 TAR RNA: potential effectiveness against all HIV-1 isolates. Mol. Ther. 7, 817–826 (2003).

    CAS  PubMed  Google Scholar 

  21. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fortes, P. et al. Inhibiting expression of specific genes in mammalian cells with 5' end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. Proc. Natl Acad. Sci. USA 100, 8264–8269 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644 (2003).

    CAS  PubMed  Google Scholar 

  24. Baker, B. F. et al. 2′-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J. Biol. Chem. 272, 11994–2000 (1997).

    CAS  PubMed  Google Scholar 

  25. Lu, Q. L. et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nature Med. 9, 1009–1014 (2003).

    CAS  PubMed  Google Scholar 

  26. Uil, T. G., Haisma, H. J. & Rots, M. G. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res. 31, 6064–6078 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Doudna, J. A. & Cech, T. R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002). A comprehensive review on ribozymes.

    CAS  PubMed  Google Scholar 

  28. Kuwabara, T., Warashina, M. & Taira, K. Cleavage of an inaccessible site by the maxizyme with two independent binding arms: an alternative approach to the recruitment of RNA helicases. J. Biochem. (Tokyo) 132, 149–155 (2002).

    CAS  Google Scholar 

  29. Michienzi, A. & Rossi, J. J. Intracellular applications of ribozymes. Methods Enzymol. 341, 581–596 (2001).

    CAS  PubMed  Google Scholar 

  30. Good, P. D. et al. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther. 4, 45–54 (1997).

    CAS  PubMed  Google Scholar 

  31. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    CAS  PubMed  Google Scholar 

  32. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    CAS  PubMed  Google Scholar 

  33. Zeng, Y. & Cullen, B. R. RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855–860 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wassenegger, M. & Pelissier, T. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37, 349–362 (1998).

    CAS  PubMed  Google Scholar 

  35. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. M. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5201 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones, A. L., Thomas, C. L. & Maule, A. J. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 17, 6385–6393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, M. -B., Wesley, S. V., Finnegan, E. J., Smith, N. A. & Waterhouse, P. M. Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants. RNA 7, 16–28 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Llave, C., Kasschau, K. D., Rector, M. A. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002). The landmark paper describing the link between RNAi and heterochromatin formation in Schizo saccharomyces pombe.

    CAS  PubMed  Google Scholar 

  40. Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002).

    CAS  PubMed  Google Scholar 

  41. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    CAS  PubMed  Google Scholar 

  42. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanism affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002).

    CAS  PubMed  Google Scholar 

  44. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    CAS  PubMed  Google Scholar 

  45. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).

    CAS  PubMed  Google Scholar 

  46. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004). A comprehensive review on miRNAs.

    CAS  PubMed  Google Scholar 

  47. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    CAS  PubMed  Google Scholar 

  49. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002).

    CAS  PubMed  Google Scholar 

  50. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  51. Nelson, P. T., Hatzigeorgiou, A. G. & Mourelatos, Z. miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10, 387–394 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA 101, 360–365 (2004).

    CAS  PubMed  Google Scholar 

  53. Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    PubMed  Google Scholar 

  54. Hemmings-Mieszczak, M., Dorn, G., Natt, F. J., Hall, J. & Wishart, W. L. Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Res. 31, 2117–2126 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Miyagishi, M., Hayashi, M. & Taira, K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. 13, 1–7 (2003).

    CAS  PubMed  Google Scholar 

  56. Kretschmer-Kazemi Far, R. & Sczakiel, G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res. 31, 4417–4424 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grunweller, A. et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res. 31, 3185–3193 (2003).

    PubMed  PubMed Central  Google Scholar 

  58. Xu, Y. et al. Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem. Biophys. Res. Commun. 306, 712–717 (2003).

    CAS  PubMed  Google Scholar 

  59. Vickers, T. A. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem. 278, 7108–7118 (2003).

    CAS  PubMed  Google Scholar 

  60. Bertrand, J. R. et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun. 296, 1000–1004 (2002).

    CAS  PubMed  Google Scholar 

  61. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  62. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  63. Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).

    CAS  PubMed  Google Scholar 

  64. Liu, Y., Braasch, D. A., Nulf, C. J. & Corey, D. R. Efficient and isoform-selective inhibition of cellular gene expression by peptide nucleic acids. Biochemistry 43, 1921–1927 (2004).

    CAS  PubMed  Google Scholar 

  65. Eckstein, F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 10, 117–121 (2000). Discusses the basic features and consequences of the most common chemical modification for ODNs.

    CAS  PubMed  Google Scholar 

  66. Yokota, T. et al. siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem. Biophys. Res. Commun. 314, 283–291 (2004).

    CAS  PubMed  Google Scholar 

  67. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).

    CAS  Google Scholar 

  68. Drew, H. R. et al. RNA hairpin loops repress protein synthesis more strongly than hammerhead ribozymes. Eur. J. Biochem. 266, 260–273 (1999).

    CAS  PubMed  Google Scholar 

  69. Lebedeva, I. & Stein, C. A. Antisense oligonucleotides: promise and reality. Annu. Rev. Pharmacol. Toxicol. 41, 403–419 (2001).

    CAS  PubMed  Google Scholar 

  70. Hafner, M. et al. Antimetastatic effect of CpG DNA mediated by type I IFN. Cancer Res. 61, 5523–5528 (2001).

    CAS  PubMed  Google Scholar 

  71. Roman, M. et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nature Med. 3, 849–854 (1997).

    CAS  PubMed  Google Scholar 

  72. Rothenfusser, S., Tuma, E., Wagner, M., Endres, S. & Hartmann, G. Recent advances in immunostimulatory CpG oligonucleotides. Curr. Opin. Mol. Ther. 5, 98–106 (2003).

    CAS  PubMed  Google Scholar 

  73. Dove, A. Antisense and sensibility. Nature Biotechnol. 20, 121–124 (2002).

    CAS  Google Scholar 

  74. Lai, J. C. et al. G3139 (oblimersen) may inhibit prostate cancer cell growth in a partially bis-CpG-dependent non-antisense manner. Mol. Cancer Ther. 2, 1031–1043 (2003).

    CAS  PubMed  Google Scholar 

  75. Tsuchihashi, Z., Khosla, M. & Herschlag, D. Protein enhancement of hammerhead ribozyme catalysis. Science 262, 99–102 (1993).

    CAS  PubMed  Google Scholar 

  76. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    CAS  PubMed  Google Scholar 

  77. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-Mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    CAS  PubMed  Google Scholar 

  78. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Google Scholar 

  79. Chi, J. T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 6343–6346 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA 100, 6347–6352 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Persengiev, S. P., Zhu, X. & Green, M. R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    CAS  PubMed  Google Scholar 

  83. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34, 263–264 (2003).

    CAS  PubMed  Google Scholar 

  84. Giles, R. V. & Tidd, D. M. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res. 20, 763–770 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Monia, B. P. et al. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993).

    CAS  PubMed  Google Scholar 

  86. Saxena, S., Jonsson, Z. O. & Dutta, A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 278, 44312–44319 (2003).

    CAS  PubMed  Google Scholar 

  87. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100, 9779–9784 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Editorial. Whither RNAi? Nature Cell Biol. 5, 489–490 (2003).

  90. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    CAS  PubMed  Google Scholar 

  91. Miller, V. M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl Acad. Sci. USA 100, 7195–7200 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding, H. et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2, 209–217 (2003).

    CAS  PubMed  Google Scholar 

  93. Abdelgany, A., Wood, M. & Beeson, D. Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum. Mol. Genet. 12, 2637–2644 (2003).

    CAS  PubMed  Google Scholar 

  94. Gonzalez-Alegre, P., Miller, V. M., Davidson, B. L. & Paulson, H. L. Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann. Neurol. 53, 781–787 (2003).

    CAS  PubMed  Google Scholar 

  95. Tuschl, T. Expanding small RNA interference. Nature Biotechnol. 20, 446–448 (2002).

    CAS  Google Scholar 

  96. Xia, H., Mao, Q., Paulson, H. L. & Davidson, B. L. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnol. 20, 1006–1010 (2002).

    CAS  Google Scholar 

  97. Arts, G. J. et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome. Res. 13, 2325–2332 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shen, C., Buck, A. K., Liu, X., Winkler, M. & Reske, S. N. Gene silencing by adenovirus-delivered siRNA. FEBS Lett. 539, 111–114 (2003).

    CAS  PubMed  Google Scholar 

  99. Zhao, L. J., Jian, H. & Zhu, H. Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene 316, 137–141 (2003).

    CAS  PubMed  Google Scholar 

  100. Tomar, R. S., Matta, H. & Chaudhary, P. M. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22, 5712–5715 (2003).

    CAS  PubMed  Google Scholar 

  101. Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L. & DiLeone, R. J. Local gene knockdown in the brain using viral-mediated RNA interference. Nature Med. 9, 1539–1544 (2003).

    CAS  PubMed  Google Scholar 

  102. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    CAS  PubMed  Google Scholar 

  103. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    CAS  PubMed  Google Scholar 

  105. An, D. S. et al. Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum. Gene Ther. 14, 1207–1212 (2003).

    CAS  PubMed  Google Scholar 

  106. van de Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Czauderna, F. et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res. 31, e127 (2003).

    PubMed  PubMed Central  Google Scholar 

  108. Matsukura, S., Jones, P. A. & Takai, D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77 (2003).

    PubMed  PubMed Central  Google Scholar 

  109. Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 16–22 (2003).

    PubMed  PubMed Central  Google Scholar 

  111. Mellitzer, G., Hallonet, M., Chen, L. & Ang, S. Spatial and temporal 'knock down' of gene expression by electroporation of double-stranded RNA and morpholinos into early postimplantation mouse embryos. Mech. Dev. 118, 57 (2002).

    CAS  PubMed  Google Scholar 

  112. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci. 6, 1277–1283 (2003).

    CAS  PubMed  Google Scholar 

  113. Calegari, F., Haubensak, W., Yang, D., Huttner, W. B. & Buchholz, F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl Acad. Sci. USA 99, 14236–14240 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Reich, S. J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9, 210–216 (2003).

    CAS  PubMed  Google Scholar 

  115. Sorensen, D. R., Leirdal, M. & Sioud, M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327, 761–766 (2003).

    CAS  PubMed  Google Scholar 

  116. Kong, X. C., Barzaghi, P. & Ruegg, M. A. Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference. EMBO Rep. 5, 183–188 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    CAS  PubMed  Google Scholar 

  118. Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genet. 32, 107–108 (2002). Paper describing the in vivo delivery of siRNAs through high-pressure tail vein injection.

    CAS  PubMed  Google Scholar 

  119. Giladi, H. et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8, 769–776 (2003).

    CAS  PubMed  Google Scholar 

  120. Klein, C. et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology 125, 9–18 (2003).

    CAS  PubMed  Google Scholar 

  121. Zender, L. et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl Acad. Sci. USA 100, 7797–7802 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Med. 9, 347–351 (2003). Paper establishing proof of principle for siRNA-based therapeutics.

    CAS  PubMed  Google Scholar 

  123. McCaffrey, A. P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnol. 21, 639–644 (2003).

    CAS  Google Scholar 

  124. Sullenger, B. A. & Gilboa, E. Emerging clinical applications of RNA. Nature 418, 252–258 (2002).

    CAS  PubMed  Google Scholar 

  125. Stevenson, M. Dissecting HIV-1 through RNA interference. Nature Rev. Immunol. 3, 851–858 (2003).

    CAS  Google Scholar 

  126. Opalinska, J. B. & Gewirtz, A. M. Nucleic-acid therapeutics: basic principles and recent applications. Nature Rev. Drug Discov. 1, 503–514 (2002).

    CAS  Google Scholar 

  127. Brenner, T. et al. The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. Faseb J. 17, 214–222 (2003).

    CAS  PubMed  Google Scholar 

  128. Geary, R. S. et al. Absolute bioavailability of 2′-O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats. J. Pharmacol. Exp. Ther. 296, 898–904 (2001).

    CAS  PubMed  Google Scholar 

  129. Sussman, H. E. Success for oral antisense therapy. Drug. Discov. Today 8, 516–517 (2003).

    PubMed  Google Scholar 

  130. Karande, P., Jain, A. & Mitragotri, S. Discovery of transdermal penetration enhancers by high-throughput screening. Nature Biotechnol. 22, 192–197 (2004).

    CAS  Google Scholar 

  131. Gautam, A., Densmore, C. L., Xu, B. & Waldrep, J. C. Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery. Mol. Ther. 2, 63–70 (2000).

    CAS  PubMed  Google Scholar 

  132. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. & Rosenquist, T. A. Germline transmission of RNAi in mice. Nature Struct. Biol. 10, 91–92 (2003).

    CAS  PubMed  Google Scholar 

  133. Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet. 33, 396–400 (2003).

    CAS  PubMed  Google Scholar 

  134. Davies, J. A. et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 13, 235–246 (2003).

    PubMed  Google Scholar 

  135. Carpenter, A. E. & Sabatini, D. M. Systematic genome-wide screens of gene function. Nature Rev. Genet. 5, 11–22 (2004).

    CAS  PubMed  Google Scholar 

  136. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    CAS  PubMed  Google Scholar 

  137. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    CAS  PubMed  Google Scholar 

  138. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    CAS  PubMed  Google Scholar 

  139. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    CAS  PubMed  Google Scholar 

  140. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).

    CAS  PubMed  Google Scholar 

  141. Piano, F. et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr. Biol. 12, 1959–19564 (2002).

    CAS  PubMed  Google Scholar 

  142. Piano, F., Schetter, A. J., Mangone, M., Stein, L. & Kemphues, K. J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).

    CAS  PubMed  Google Scholar 

  143. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1, E12 (2003).

    PubMed  PubMed Central  Google Scholar 

  144. Vastenhouw, N. L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol. 13, 1311–1316 (2003).

    CAS  PubMed  Google Scholar 

  145. Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 17, 443–448 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003).

    CAS  PubMed  Google Scholar 

  147. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    CAS  PubMed  Google Scholar 

  148. Kiger, A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    CAS  PubMed  Google Scholar 

  150. Nolan, P. M., Kapfhamer, D. & Bucan, M. Random mutagenesis screen for dominant behavioral mutations in mice. Methods 13, 379–395 (1997).

    CAS  PubMed  Google Scholar 

  151. Rinchik, E. M. & Carpenter, D. A. N-ethyl-N-nitrosourea mutagenesis of a 6- to 11-cM subregion of the Fah-Hbb interval of mouse chromosome 7: completed testing of 4557 gametes and deletion mapping and complementation analysis of 31 mutations. Genetics 152, 373–383 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    CAS  PubMed  Google Scholar 

  153. Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    CAS  PubMed  Google Scholar 

  154. Kile, B. T. et al. Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86 (2003).

    CAS  PubMed  Google Scholar 

  155. Oates, A. C., Bruce, A. E. & Ho, R. K. Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol. 224, 20–28 (2000).

    CAS  PubMed  Google Scholar 

  156. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    CAS  PubMed  Google Scholar 

  157. Zhou, Y., Ching, Y. -P., Kok, K. H., Kung, H. & Jin, D. -J. Post-transcriptional suppression of gene expression in Xenopus embryos by small interfering RNAs. Nucleic Acids Res. 30, 1664–1669 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Pekarik, V. et al. Screening for gene function in chicken embryo using RNAi and electroporation. Nature Biotechnol. 21, 93–96 (2003).

    CAS  Google Scholar 

  159. Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).

    CAS  PubMed  Google Scholar 

  160. Stein, P., Svoboda, P. & Schultz, R. M. Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev. Biol. 256, 187–193 (2003).

    CAS  PubMed  Google Scholar 

  161. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    CAS  PubMed  Google Scholar 

  162. Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad. Sci. USA 101, 135–140 (2003).

    PubMed  PubMed Central  Google Scholar 

  163. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    CAS  PubMed  Google Scholar 

  164. Berns, K. et al. A large-scale RNAi screen in human cells identifies novel components of the p53 pathway. Nature (in the press) Paper describing a high-throughput siRNA-based screen in mammalian cells.

  165. Walters, D. K. & Jelinek, D. F. The effectiveness of double-stranded short inhibitory RNAs (siRNAs) may depend on the method of transfection. Antisense Nucleic Acid Drug Dev. 12, 411–418 (2002).

    CAS  PubMed  Google Scholar 

  166. Weil, D. et al. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells. Biotechniques 33, 1244–1248 (2002).

    CAS  PubMed  Google Scholar 

  167. Zhou, A., Scoggin, S., Gaynor, R. B. & Williams, N. S. Identification of NF-κB-regulated genes induced by TNFα utilizing expression profiling and RNA interference. Oncogene 22, 2054–2064 (2003).

    CAS  PubMed  Google Scholar 

  168. Williams, N. S. et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin. Cancer Res. 9, 931–946 (2003).

    CAS  PubMed  Google Scholar 

  169. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    CAS  PubMed  Google Scholar 

  170. Bailey, S. N., Wu, R. Z. & Sabatini, D. M. Applications of transfected cell microarrays in high-throughput drug discovery. Drug Discov. Today 7, S113–S118 (2002).

    CAS  PubMed  Google Scholar 

  171. Mousses, S. et al. RNAi microarray analysis in cultured mammalian cells. Genome Res 13, 2341–2347 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326–330 (2004).

    CAS  Google Scholar 

  173. Hohjoh, H. Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett. 557, 193–198 (2004).

    CAS  PubMed  Google Scholar 

  174. Silva, J. M., Sachidanandam, R. & Hannon, G. J. Free energy lights the path toward more effective RNAi. Nature Genet. 35, 303–305 (2003).

    CAS  PubMed  Google Scholar 

  175. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    CAS  PubMed  Google Scholar 

  176. Shirane, D. et al. Enzymatic production of RNAi libraries from cDNAs. Nature Genet. 36, 190–196 (2004).

    CAS  PubMed  Google Scholar 

  177. Sen, G., Wehrman, T. S., Myers, J. W. & Blau, H. M. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nature Genet. 36, 183–189 (2004).

    CAS  PubMed  Google Scholar 

  178. Kawasaki, H., Suyama, E., Iyo, M. & Taira, K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. 31, 981–987 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Howard, K. Unlocking the money-making potential of RNAi. Nature Biotechnol. 21, 1441–1446 (2003).

    CAS  Google Scholar 

  180. Song, E. et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J. Virol. 77, 7174–7181 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Filleur, S. et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 63, 3919–3922 (2003).

    CAS  PubMed  Google Scholar 

  182. Yang, G., Thompson, J. A., Fang, B. & Liu, J. Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene 22, 5694–5701 (2003).

    CAS  PubMed  Google Scholar 

  183. Li, K., Lin, S. Y., Brunicardi, F. C. & Seu, P. Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 63, 3593–3597 (2003).

    CAS  PubMed  Google Scholar 

  184. Verma, U. N., Surabhi, R. M., Schmaltieg, A., Becerra, C. & Gaynor, R. B. Small interfering RNAs directed against β-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer. Res. 9, 1291–1300 (2003).

    CAS  PubMed  Google Scholar 

  185. Yoshinouchi, M. et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol. Ther. 8, 762–768 (2003).

    CAS  PubMed  Google Scholar 

  186. Pieken, W. A., Olsen, D. B., Benseler, F., Aurup, H. & Eckstein, F. Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. Science 253, 314–317 (1991).

    CAS  PubMed  Google Scholar 

  187. Beigelman, L. et al. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem. 270, 25702–25708 (1995).

    CAS  PubMed  Google Scholar 

  188. Levin, A. A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta 1489, 69–84 (1999).

    CAS  PubMed  Google Scholar 

  189. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Amarzguioui, M., Holen, T., Babaie, E. & Prydz, H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Braasch, D. A. et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42, 7967–7975 (2003).

    CAS  PubMed  Google Scholar 

  193. Chiu, Y. L. & Rana, T. M. RNAi in human cells. Basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    CAS  PubMed  Google Scholar 

  194. Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Holen, T., Amarzguioui, M., Babaie, E. & Prydz, H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res. 31, 2401–2407 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Capodici, J., Kariko, K. & Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol. 169, 5196–5201 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Eckstein and M. Manoharan for their thoughtful comments on the manuscript. We would also like to thank A. Patkaniowska for the Table of siRNA chemical modifications, and the members of the Tuschl laboratory for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tuschl.

Ethics declarations

Competing interests

T.T. is a co-founder of Alnylam Pharmaceuticals, which develops siRNA-based therapeutics.

Related links

Related links

FURTHER INFORMATION

RNA interference web focus

Glossary

INTERFERON RESPONSE

A cellular response to dsRNA longer than 30 base pairs that results in global post-transcriptional gene silencing.

CHROMATIN

Complex of DNA, histones and non-histone proteins from which eukaryotic chromosomes are formed.

DOMINANT DISEASE

A disease caused by a dominant genetic mutation.

SATURATING GENETIC SCREEN

A screen of sufficient scale to identify all possible target genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorsett, Y., Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3, 318–329 (2004). https://doi.org/10.1038/nrd1345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing