Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cachexia in patients with oesophageal cancer

Key Points

  • Weight loss, owing to malnutrition is common in patients with oesophageal cancer and is often associated with worse clinical outcomes

  • Cachexia in patients with oesophageal cancer is compounded by the location of the tumour and the fact that oesophageal cancer is often diagnosed at an advanced stage

  • Cancer-treatment-related loss of body and muscle mass are substantial and should be considered as part of the cachexia syndrome observed in patients with oesophageal cancer

  • Treatment with a curative intent involves exceptionally invasive surgery that often leads to profound postoperative weight loss and malnutrition, with adverse effects on both health-related quality of life and survival

  • An unmet need exists for early identification of cachexia in patients with oesophageal cancer, with appropriate assessment tools for each of its major domains, throughout all of its clinical phases

  • Management of patients with cachexia demands a complex multimodal approach, with early screening, nutrition support and mitigation of skeletal muscle loss

Abstract

Oesophageal cancer is a debilitating disease with a poor prognosis, and weight loss owing to malnutrition prevails in the majority of patients. Cachexia, a multifactorial syndrome characterized by the loss of fat and skeletal muscle mass and systemic inflammation arising from complex host–tumour interactions is a major contributor to malnutrition, which is a determinant of tolerance to treatment and survival. In patients with oesophageal cancer, cachexia is further compounded by eating difficulties owing to the stage and location of the tumour, and the effects of neoadjuvant therapy. Treatment with curative intent involves exceptionally extensive and invasive surgery, and the subsequent anatomical changes often lead to eating difficulties and severe postoperative malnutrition. Thus, screening for cachexia by means of percentage weight loss and BMI during the cancer trajectory and survivorship periods is imperative. Additionally, markers of inflammation (such as C-reactive protein), dysphagia and appetite loss should be assessed at diagnosis. Routine assessments of body composition are also necessary in patients with oesophageal cancer to enable assessment of skeletal muscle loss, which might be masked by sarcopenic obesity in these patients. A need exists for clinical trials examining the effectiveness of therapeutic and physical-activity-based interventions in mitigating muscle loss and counteracting cachexia in these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of cancer cachexia.
Figure 2: The major domains of cachexia in patients with oesophageal cancer.
Figure 3: Possible mechanisms of muscle wasting in patients with oesophageal cancer.
Figure 4: Measurement of muscle-mass using CT.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Arnold, M., Soerjomataram, I., Ferlay, J. & Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 64, 381–387 (2014).

    Article  PubMed  Google Scholar 

  3. Sjoquist, K. M. et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 12, 681–692 (2011).

    Article  PubMed  Google Scholar 

  4. Makowiec, F. et al. Improved long-term survival after esophagectomy for esophageal cancer: influence of epidemiologic shift and neoadjuvant therapy. J. Gastrointest. Surg. 17, 1193–1201 (2013).

    Article  PubMed  Google Scholar 

  5. Adenis, A. et al. Clinical complete responders to definite chemoradiation or radiation therapy for oesophageal cancer: predictors of outcome. BMC Cancer 13, 413 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bozzetti, F. Screening the nutritional status in oncology: a preliminary report on 1,000 outpatients. Support Care Cancer 17, 279–284 (2009).

    Article  PubMed  Google Scholar 

  7. Tuca, A., Jimenez-Fonseca, P. & Gascon, P. Clinical evaluation and optimal management of cancer cachexia. Crit. Rev. Oncol. Hematol. 88, 625–636 (2013).

    Article  PubMed  Google Scholar 

  8. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  9. Johns, N., Stephens, N. A. & Fearon, K. C. Muscle wasting in cancer. Int. J. Biochem. Cell Biol. 45, 2215–2229 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Blum, D. et al. Validation of the Consensus-Definition for Cancer Cachexia and evaluation of a classification model--a study based on data from an international multicentre project (EPCRC-CSA). Ann. Oncol. 25, 1635–1642 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Fearon, K. C., Voss, A. C. & Hustead, D. S. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am. J. Clin. Nutr. 83, 1345–1350 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Fearon, K., Arends, J. & Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10, 90–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Hoyo, C. et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int. J. Epidemiol. 41, 1706–1718 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cooper, J. S. et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85–01). Radiation Therapy Oncology Group. JAMA 281, 1623–1627 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lagarde, S. M., Vrouenraets, B. C., Stassen, L. P. & van Lanschot, J. J. Evidence-based surgical treatment of esophageal cancer: overview of high-quality studies. Ann. Thorac. Surg. 89, 1319–1326 (2010).

    Article  PubMed  Google Scholar 

  16. Martin, L. & Lagergren, P. Risk factors for weight loss among patients surviving 5 years after esophageal cancer surgery. Ann. Surg. Oncol. 22, 610–616 (2015).

    Article  PubMed  Google Scholar 

  17. Martin, L. & Lagergren, P. Long-term weight change after oesophageal cancer surgery. Br. J. Surg. 96, 1308–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Scarpa, M. et al. Systematic review of health-related quality of life after esophagectomy for esophageal cancer. World J. Gastroenterol. 17, 4660–4674 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeejeebhoy, K. N. Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: overlap of clinical features. Curr. Opin. Clin. Nutr. Metab. Care 15, 213–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Muscaritoli, M. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 29, 154–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Jacquelin-Ravel, N. & Pichard, C. Clinical nutrition, body composition and oncology: a critical literature review of the synergies. Crit. Rev. Oncol. Hematol. 84, 37–46 (2012).

    Article  PubMed  Google Scholar 

  22. Thibault, R., Genton, L. & Pichard, C. Body composition: why, when and for who? Clin. Nutr. 31, 435–447 (2012).

    Article  PubMed  Google Scholar 

  23. Martin, L. et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. 33, 90–99 (2015).

    Article  PubMed  Google Scholar 

  24. Cruz-Jentoft, A. J. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people. Age Ageing 39, 412–423 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fearon, K., Evans, W. J. & Anker, S. D. Myopenia — a new universal term for muscle wasting. J. Cachexia Sarcopenia Muscle 2, 1–3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martin, L. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 31, 1539–1547 (2013).

    Article  PubMed  Google Scholar 

  27. Prado, C. M. et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 9, 629–635 (2008).

    Article  PubMed  Google Scholar 

  28. Laviano, A., Meguid, M. M., Inui, A., Muscaritoli, M. & Rossi-Fanelli, F. Therapy insight: cancer anorexia-cachexia syndrome—when all you can eat is yourself. Nat. Clin. Pract. Oncol. 2, 158–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Daly, J. M. et al. Esophageal cancer: results of an American College of Surgeons patient care evaluation study. J. Am. Coll. Surg. 190, 562–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ryan, A. M. et al. Post-oesophagectomy early enteral nutrition via a needle catheter jejunostomy: 8-year experience at a specialist unit. Clin. Nutr. 25, 386–393 (2006).

    Article  PubMed  Google Scholar 

  31. van der Schaaf, M. K. et al. The influence of preoperative weight loss on the postoperative course after esophageal cancer resection. J. Thorac. Cardiovasc. Surg. 147, 490–495 (2014).

    Article  PubMed  Google Scholar 

  32. Tisdale, M. J. Mechanisms of cancer cachexia. Physiol. Rev. 89, 381–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Donohoe, C. L., Ryan, A. M. & Reynolds, J. V. Cancer cachexia: mechanisms and clinical implications. Gastroenterol. Res. Pract. 2011, 601434 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baracos, V. E. Cancer-associated cachexia and underlying biological mechanisms. Annu. Rev. Nutr. 26, 435–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki, H. et al. Cancer cachexia pathophysiology and translational aspect of herbal medicine. Jpn J. Clin. Oncol. 43, 695–705 (2013).

    Article  PubMed  Google Scholar 

  36. McMillan, D. C. Systemic inflammation, nutritional status and survival in patients with cancer. Curr. Opin. Clin. Nutr. Metab. Care 12, 223–226 (2009).

    Article  PubMed  Google Scholar 

  37. Deans, D. A. et al. The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer. Br. J. Cancer 100, 63–69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. da Silva, J. B., Mauricio, S. F., Bering, T. & Correia, M. I. The relationship between nutritional status and the Glasgow prognostic score in patients with cancer of the esophagus and stomach. Nutr. Cancer 65, 25–33 (2013).

    Article  PubMed  Google Scholar 

  39. Vashist, Y. K. et al. Glasgow Prognostic Score is a predictor of perioperative and long-term outcome in patients with only surgically treated esophageal cancer. Ann. Surg. Oncol. 18, 1130–1138 (2011).

    Article  PubMed  Google Scholar 

  40. Nozoe, T., Saeki, H. & Sugimachi, K. Significance of preoperative elevation of serum C-reactive protein as an indicator of prognosis in esophageal carcinoma. Am. J. Surg. 182, 197–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Shimada, H. et al. Elevation of preoperative serum C-reactive protein level is related to poor prognosis in esophageal squamous cell carcinoma. J. Surg. Oncol. 83, 248–252 (2003).

    Article  PubMed  Google Scholar 

  42. Tsai, V. W. et al. Anorexia/cachexia of chronic diseases: a role for the TGFβ family cytokine MIC-1/GDF15. J. Cachexia Sarcopenia Muscle 3, 239–243 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gelin, J. et al. Role of endogenous tumor necrosis factor α and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res. 51, 415–421 (1991).

    CAS  PubMed  Google Scholar 

  44. Skipworth, R. J., Stewart, G. D., Dejong, C. H., Preston, T. & Fearon, K. C. Pathophysiology of cancer cachexia: much more than host-tumour interaction? Clin. Nutr. 26, 667–676 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Whitehouse, A. S. & Tisdale, M. J. Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaΒ. Br. J. Cancer 89, 1116–1122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Watchorn, T. M., Waddell, I., Dowidar, N. & Ross, J. A. Proteolysis-inducing factor regulates hepatic gene expression via the transcription factors NF-(kappa)B and STAT3. FASEB J. 15, 562–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Deans, D. A. et al. Elevated tumour interleukin-1beta is associated with systemic inflammation: a marker of reduced survival in gastro-oesophageal cancer. Br. J. Cancer 95, 1568–1575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Groblewska, M., Mroczko, B., Sosnowska, D. & Szmitkowski, M. Interleukin 6 and C-reactive protein in esophageal cancer. Clin. Chim. Acta 413, 1583–1590 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Makuuchi, Y. et al. Soluble interleukin-6 receptor is a serum biomarker for the response of esophageal carcinoma to neoadjuvant chemoradiotherapy. Cancer Sci. 104, 1045–1051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skipworth, R. J. et al. Plasma MIC-1 correlates with systemic inflammation but is not an independent determinant of nutritional status or survival in oesophago-gastric cancer. Br. J. Cancer 102, 665–672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deans, C. et al. Serum parathyroid hormone-related peptide is associated with systemic inflammation and adverse prognosis in gastroesophageal carcinoma. Cancer 103, 1810–1818 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Bing, C. et al. Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor. Br. J. Cancer 86, 612–618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Islam-Ali, B., Khan, S., Price, S. A. & Tisdale, M. J. Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF). Br. J. Cancer 85, 758–763 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arner, P. Medicine. Lipases in cachexia. Science 333, 163–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Fouladiun, M. et al. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care—correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103, 2189–2198 (2005).

    Article  PubMed  Google Scholar 

  56. Cheng, Y. et al. Prognostic value of body mass index for patients undergoing esophagectomy for esophageal squamous cell carcinoma. Jpn J. Clin. Oncol. 43, 146–153 (2013).

    Article  PubMed  Google Scholar 

  57. Bhayani, N. H. et al. Does morbid obesity worsen outcomes after esophagectomy? Ann. Thorac. Surg. 95, 1756–1761 (2013).

    Article  PubMed  Google Scholar 

  58. Zhang, S. S. et al. The impact of body mass index on complication and survival in resected oesophageal cancer: a clinical-based cohort and meta-analysis. Br. J. Cancer 109, 2894–2903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Batista, M. L. Jr et al. Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine 61, 532–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Deans, D. A. et al. Expression of the proteolysis-inducing factor core peptide mRNA is upregulated in both tumour and adjacent normal tissue in gastro-oesophageal malignancy. Br. J. Cancer 94, 731–736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Penna, F. et al. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am. J. Pathol. 182, 1367–1378 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Tardif, N., Klaude, M., Lundell, L., Thorell, A. & Rooyackers, O. Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients. Am. J. Clin. Nutr. 98, 1485–1492 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, J., Huang, C., Xiao, H., Tang, Q. & Cai, W. Weight loss and resting energy expenditure in male patients with newly diagnosed esophageal cancer. Nutrition 29, 1310–1314 (2013).

    Article  PubMed  Google Scholar 

  64. Cao, D. X. et al. Resting energy expenditure and body composition in patients with newly detected cancer. Clin. Nutr. 29, 72–77 (2010).

    Article  PubMed  Google Scholar 

  65. Davis, M. P., Dreicer, R., Walsh, D., Lagman, R. & LeGrand, S. B. Appetite and cancer-associated anorexia: a review. J. Clin. Oncol. 22, 1510–1517 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Inui, A. Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res. 59, 4493–4501 (1999).

    CAS  PubMed  Google Scholar 

  67. Sarraf, P. et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med. 185, 171–175 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grunfeld, C. et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Invest. 97, 2152–2157 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Finck, B. N., Kelley, K. W., Dantzer, R. & Johnson, R. W. In vivo and in vitro evidence for the involvement of tumor necrosis factor-alpha in the induction of leptin by lipopolysaccharide. Endocrinology 139, 2278–2283 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Simons, J. P., Schols, A. M., Campfield, L. A., Wouters, E. F. & Saris, W. H. Plasma concentration of total leptin and human lung-cancer-associated cachexia. Clin. Sci. (Lond.) 93, 273–277 (1997).

    Article  CAS  Google Scholar 

  71. Wallace, A. M., Sattar, N. & McMillan, D. C. Effect of weight loss and the inflammatory response on leptin concentrations in gastrointestinal cancer patients. Clin. Cancer Res. 4, 2977–2979 (1998).

    CAS  PubMed  Google Scholar 

  72. Diakowska, D. et al. Circulating leptin and inflammatory response in esophageal cancer, esophageal cancer-related cachexia-anorexia syndrome (CAS) and non-malignant CAS of the alimentary tract. Cytokine 51, 132–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Jiang, N. et al. Clinical determinants of weight loss in patients with esophageal carcinoma during radiotherapy: a prospective longitudinal view. Asian Pac. J. Cancer Prev. 15, 1943–1948 (2014).

    Article  PubMed  Google Scholar 

  74. Martin, L., Jia, C., Rouvelas, I. & Lagergren, P. Risk factors for malnutrition after oesophageal and cardia cancer surgery. Br. J. Surg. 95, 1362–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Ribi, K. et al. Is a change in patient-reported dysphagia after induction chemotherapy in locally advanced esophageal cancer a predictive factor for pathological response to neoadjuvant chemoradiation? Support Care Cancer 17, 1109–1116 (2009).

    Article  PubMed  Google Scholar 

  76. Cools-Lartigue, J. et al. Management of dysphagia in esophageal adenocarcinoma patients undergoing neoadjuvant chemotherapy: can invasive tube feeding be avoided? Ann. Surg. Oncol. 22, 1858–1865 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Miller, K. R. & Bozeman, M. C. Nutrition therapy issues in esophageal cancer. Curr. Gastroenterol. Rep. 14, 356–366 (2012).

    Article  PubMed  Google Scholar 

  78. Prado, C. M. et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin. Cancer Res. 13, 3264–3268 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Cosquéric, G. et al. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br. J. Nutr. 96, 895–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Lieffers, J. R., Bathe, O. F., Fassbender, K., Winget, M. & Baracos, V. E. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br. J. Cancer 107, 931–936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Awad, S. et al. Marked changes in body composition following neoadjuvant chemotherapy for oesophagogastric cancer. Clin. Nutr. 31, 74–77 (2012).

    Article  PubMed  Google Scholar 

  82. Yip, C. et al. Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur. Radiol. 24, 998–1005 (2014).

    Article  PubMed  Google Scholar 

  83. Ida, S. et al. Changes in body composition secondary to neoadjuvant chemotherapy for advanced esophageal cancer are related to the occurrence of postoperative complications after esophagectomy. Ann. Surg. Oncol. 21, 3675–3679 (2014).

    Article  PubMed  Google Scholar 

  84. Jack, S. et al. The effect of neoadjuvant chemotherapy on physical fitness and survival in patients undergoing oesophagogastric cancer surgery. Eur. J. Surg. Oncol. 40, 1313–1320 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Tan, B. H., Birdsell, L. A., Martin L, Baracos, V. E. & Fearon, K. C. Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin. Cancer Res. 15, 6973–6979 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Prado, C. M. et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin. Cancer Res. 15, 2920–2926 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Huillard, O. et al. Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br. J. Cancer 108, 1034–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lagergren, J. & Lagergren, P. Recent developments in esophageal adenocarcinoma. CA Cancer J. Clin. 63, 232–248 (2013).

    Article  PubMed  Google Scholar 

  89. Riccardi, D. & Allen, K. Nutritional management of patients with esophageal and esophagogastric junction cancer. Cancer Control 6, 64–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Martin, L., Lagergren, J., Lindblad, M., Rouvelas, I. & Lagergren, P. Malnutrition after oesophageal cancer surgery in Sweden. Br. J. Surg. 94, 1496–1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. D'Journo, X. B. et al. Prognostic impact of weight loss in 1-year survivors after transthoracic esophagectomy for cancer. Dis. Esophagus 25, 527–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Doki, Y. et al. Ghrelin reduction after esophageal substitution and its correlation to postoperative body weight loss in esophageal cancer patients. Surgery 139, 797–805 (2006).

    Article  PubMed  Google Scholar 

  93. Koizumi, M. et al. Postoperative weight loss does not resolve after esophagectomy despite normal serum ghrelin levels. Ann. Thorac Surg. 91, 1032–1037 (2011).

    Article  PubMed  Google Scholar 

  94. Miyazaki, T. et al. Ghrelin level and body weight loss after esophagectomy for esophageal cancer. J. Surg. Res. 176, 74–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Yamamoto, K. et al. Reduced plasma ghrelin levels on day 1 after esophagectomy: a new predictor of prolonged systemic inflammatory response syndrome. Surg. Today 43, 48–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Djarv, T., Lagergren, J., Blazeby, J. M. & Lagergren, P. Long-term health-related quality of life following surgery for oesophageal cancer. Br. J. Surg. 95, 1121–1126 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Boyce, H. W. Jr. Palliation of dysphagia of esophageal cancer by endoscopic lumen restoration techniques. Cancer Control 6, 73–83 (1999).

    Article  PubMed  Google Scholar 

  98. Wheelwright, S. et al. A systematic review of health-related quality of life instruments in patients with cancer cachexia. Support Care Cancer 21, 2625–2636 (2013).

    Article  PubMed  Google Scholar 

  99. Blazeby, J. M. et al. Development of an EORTC questionnaire module to be used in quality of life assessment for patients with oesophageal cancer. The EORTC Quality of Life Study Group. Eur. J. Cancer 32A, 1912–1917 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Blazeby, J. M. et al. Clinical and psychometric validation of an EORTC questionnaire module, the EORTC QLQ-OES18, to assess quality of life in patients with oesophageal cancer. Eur. J. Cancer 39, 1384–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Johnson, C. et al. EORTC QOL Module for Cancer Cachexia (QLQ-CAX25) EORTC Quality of Life Department [online], (2015).

    Google Scholar 

  102. Prado, C. M., Birdsell, L. A. & Baracos, V. E. The emerging role of computerized tomography in assessing cancer cachexia. Curr. Opin. Support. Palliat. Care 3, 269–275 (2009).

    Article  PubMed  Google Scholar 

  103. de Vos-Geelen, J., Fearon, K. C. & Schols, A. M. The energy balance in cancer cachexia revisited. Curr. Opin. Clin. Nutr. Metab. Care 17, 509–514 (2014).

    Article  PubMed  Google Scholar 

  104. Fearon, K. C. Cancer cachexia and fat-muscle physiology. N. Engl. J. Med. 365, 565–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Arends, J. et al. ESPEN Guidelines on enteral nutrition: Non-surgical oncology. Clin. Nutr. 25, 245–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Bauer, J. D. et al. Evidence based practice guidelines for the nutritional management of cancer cachexia. Nutrition & Dietetics 63, S3–S32 (2006).

    Article  Google Scholar 

  107. Mariette, C., De Botton, M. L. & Piessen, G. Surgery in esophageal and gastric cancer patients: what is the role for nutrition support in your daily practice? Ann. Surg. Oncol. 19, 2128–2134 (2012).

    Article  PubMed  Google Scholar 

  108. Fietkau, R. et al. A disease-specific enteral nutrition formula improves nutritional status and functional performance in patients with head and neck and esophageal cancer undergoing chemoradiotherapy: results of a randomized, controlled, multicenter trial. Cancer 119, 3343–3353 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Llop-Talaveron, J. M. et al. Artificial nutritional support in cancer patients after esophagectomy: 11 years of experience. Nutr. Cancer 66, 1038–1046 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Ligthart-Melis, G. C. et al. Dietician-delivered intensive nutritional support is associated with a decrease in severe postoperative complications after surgery in patients with esophageal cancer. Dis. Esophagus 26, 587–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Starr, B., Davis, S., Ayala-Peacock, D., Blackstock, W. A. & Levine, E. A. Reassessment of the role of enteral tube feedings for patients with esophageal cancer. Am. Surg. 80, 752–758 (2014).

    PubMed  Google Scholar 

  112. Horowitz, M., Neeman, E., Sharon, E. & Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bozzetti, F. et al. ESPEN Guidelines on Parenteral Nutrition: non-surgical oncology. Clin. Nutr. 28, 445–454 (2009)

    Article  CAS  PubMed  Google Scholar 

  114. Buijs, N. et al. Perioperative arginine-supplemented nutrition in malnourished patients with head and neck cancer improves long-term survival. Am. J. Clin. Nutr. 92, 1151–1156 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Ries, A. et al. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat. Med. 26, 294–304 (2012).

    Article  PubMed  Google Scholar 

  116. Aapro, M. et al. Early recognition of malnutrition and cachexia in the cancer patient: a position paper of a European School of Oncology Task Force. Ann. Oncol. 25, 1492–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Sultan, J. et al. Randomized clinical trial of omega-3 fatty acid-supplemented enteral nutrition versus standard enteral nutrition in patients undergoing oesophagogastric cancer surgery. Br. J. Surg. 99, 346–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Peng, J., Cai, J., Niu, Z. X. & Chen, L. Q. Early enteral nutrition compared with parenteral nutrition for esophageal cancer patients after esophagectomy: a meta-analysis. Dis. Esophagus http://dx.doi.org/10.1111/dote.12337.

  119. Wright, G. P., Foster, S. M. & Chung, M. H. Esophagectomy in patients with prior percutaneous endoscopic gastrostomy tube placement. Am. J. Surg. 207, 361–365 (2014).

    Article  PubMed  Google Scholar 

  120. Weimann, A. et al. ESPEN Guidelines on Enteral Nutrition: Surgery including organ transplantation. Clin. Nutr. 25, 224–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Pascual Lopez, A. et al. Systematic review of megestrol acetate in the treatment of anorexia-cachexia syndrome. J. Pain Symptom Manage. 27, 360–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Lesniak, W., Bala, M., Jaeschke, R. & Krzakowski, M. Effects of megestrol acetate in patients with cancer anorexia-cachexia syndrome--a systematic review and meta-analysis. Pol. Arch. Med. Wewn. 118, 636–644 (2008).

    CAS  PubMed  Google Scholar 

  123. Madeddu, C., Maccio, A., Panzone, F., Tanca, F. M. & Mantovani, G. Medroxyprogesterone acetate in the management of cancer cachexia. Expert Opin. Pharmacother. 10, 1359–1366 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Loprinzi, C. L. et al. Randomized comparison of megestrol acetate versus dexamethasone versus fluoxymesterone for the treatment of cancer anorexia/cachexia. J. Clin. Oncol. 17, 3299–3306 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Yamamoto, K. et al. Randomized phase II study of clinical effects of ghrelin after esophagectomy with gastric tube reconstruction. Surgery 148, 31–38 (2010).

    Article  PubMed  Google Scholar 

  126. Takata, A. et al. Randomized phase II study of the anti-inflammatory effect of ghrelin during the postoperative period of esophagectomy. Ann. Surg. 262, 230–236 (2014).

    Article  Google Scholar 

  127. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Tisdale, M. J. Reversing cachexia. Cell 142, 511–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Wilkes, E. A. et al. Poor tolerability of thalidomide in end-stage oesophageal cancer. Eur. J. Cancer Care (Engl.) 20, 593–600 (2011).

    Article  CAS  Google Scholar 

  130. Khan, Z. H. et al. Oesophageal cancer and cachexia: the effect of short-term treatment with thalidomide on weight loss and lean body mass. Aliment Pharmacol. Ther. 17, 677–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Zinna, E. M. & Yarasheski, K. E. Exercise treatment to counteract protein wasting of chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 6, 87–93 (2003).

    Article  PubMed  Google Scholar 

  132. Lenk, K., Schuler, G. & Adams, V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 1, 9–21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Oldervoll, L. M. et al. Physical exercise for cancer patients with advanced disease: a randomized controlled trial. Oncologist 16, 1649–1657 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lonbro, S. The effect of progressive resistance training on lean body mass in post-treatment cancer patients — a systematic review. Radiother. Oncol. 110, 71–80 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.A. researched data for this article, both authors made a substantial contribution to discussion of content, both authors wrote the manuscript and P.L. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Pernilla Lagergren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandavadivelan, P., Lagergren, P. Cachexia in patients with oesophageal cancer. Nat Rev Clin Oncol 13, 185–198 (2016). https://doi.org/10.1038/nrclinonc.2015.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing