Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Managing bone metastases and reducing skeletal related events in prostate cancer

A Corrigendum to this article was published on 11 November 2014

This article has been updated

Key Points

  • Metastatic castration-resistant prostate cancer (mCRPC) is associated with complications in bone known as skeletal-related events (SREs) that are associated with decreased quality of life and increased mortality

  • Androgen-deprivation therapy is used to treat advanced-stage prostate cancer and leads to loss of bone mineral density (BMD) and increases the risk of fracture

  • Osteoclast-targeted agents including the bisphosphonate zoledronic acid and the monoclonal antibody denosumab are used to reduce the incidence of SREs and to decrease loss of BMD

  • A number of recently approved agents including androgen pathway inhibitors abiraterone and enzalutamide and the radiopharmaceutical radium-223 have been shown to increase survival and to decrease skeletal morbidity in mCRPC

  • Cabozantinib, a multi-targeted tyrosine kinase inhibitor, is an agent in development that has demonstrated promising activity in CRPC metastatic to bone

Abstract

Advanced-stage prostate cancer is associated with skeletal complications related to metastatic disease and its treatment. On the one hand, metastatic disease to bone is commonly associated with skeletal-related events (SREs); on the other hand, treatment with androgen-deprivation therapy (ADT) leads to loss in bone mineral density (BMD) and increased risk of fracture. Despite osteoblastic appearance on radiography, bone metastases from prostate cancer are associated with increased osteoblast and osteoclast activity providing the rationale for treatment with osteoclast-targeted agents. The bisphosphonate zoledronic acid and the monoclonal antibody denosumab reduce the incidence of SREs in metastatic castration-resistant prostate cancer (mCRPC). A number of agents prevent loss of BMD associated with ADT, but only denosumab is approved to reduce fractures in patients with non-metastatic prostate cancer. Another recently approved agent—radium-223—improves survival and delays SREs in mCRPC. The inhibitors of androgen receptor signalling, abiraterone and enzalutamide, improve survival in mCRPC and delay SREs, although the latter is likely related to control of disease rather than a direct effect on bone. Finally, the tyrosine kinase inhibitor cabozantinib shows promising activity in bone metastases from mCRPC. This Review addresses the skeletal morbidity associated with prostate cancer and the therapeutic options that exist to treat it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 'vicious cycle' of bone metastases.
Figure 2: Bone-targeted agents and their respective targets.

Similar content being viewed by others

Change history

  • 11 November 2014

    In the version of this manuscript originally published online and in print, some data in Table 1 were incorrect. These errors have now been corrected in the online HTML and PDF versions of the manuscript.

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  2. Jacobs, S. C. Spread of prostatic cancer to bone. Urology 21, 337–344 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Scher, H. I., Morris, M. J., Kelly, W. K., Schwartz, L. H. & Heller, G. Prostate cancer clinical trial end points: “RECIST”ing a step backwards. Clin. Cancer Res. 11, 5223–5232 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coleman, R. E. Skeletal complications of malignancy. Cancer 80, 1588–1594 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. DePuy, V. et al. Effects of skeletal morbidities on longitudinal patient-reported outcomes and survival in patients with metastatic prostate cancer. Support Care Cancer 15, 869–876 (2007).

    Article  PubMed  Google Scholar 

  6. Oefelein, M. G., Ricchiuti, V., Conrad, W. & Resnick, M. I. Skeletal fractures negatively correlate with overall survival in men with prostate cancer. J. Urol. 168, 1005–1007 (2002).

    Article  PubMed  Google Scholar 

  7. Alibhai, S. M. et al. Fracture types and risk factors in men with prostate cancer on androgen deprivation therapy: a matched cohort study of 19,079 men. J. Urol. 184, 918–923 (2010).

    Article  PubMed  Google Scholar 

  8. Manolagas, S. C. & Jilka, R. L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332, 305–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540–3545 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566–1571 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Yasuda, H. et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329–1337 (1998).

    Article  PubMed  Google Scholar 

  16. Keller, E. T. & Brown, J. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J. Cell. Biochem. 91, 718–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Guise, T. A. Molecular mechanisms of osteolytic bone metastases. Cancer 88, 2892–2898 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Saad, F. Bone-directed treatments for prostate cancer. Hematol. Oncol. Clin. North Am. 20, 947–963 (2006).

    Article  PubMed  Google Scholar 

  19. Snedecor, S. J., Carter, J. A., Kaura, S. & Botteman, M. F. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a cost-effectiveness analysis. J. Med. Econ. 16, 19–29 (2013).

    Article  PubMed  Google Scholar 

  20. Berruti, A. et al. Predictive factors for skeletal complications in hormone-refractory prostate cancer patients with metastatic bone disease. Br. J. Cancer 93, 633–638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tchekmedyian, N. S., Chen, Y. M. & Saad, F. Disease progression increases the risk of skeletal-related events in patients with bone metastases from castration-resistant prostate cancer, lung cancer, or other solid tumors. Cancer Invest. 28, 849–855 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Saad, F. et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J. Natl Cancer Inst. 96, 879–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Saad, F., Segal, S. & Eastham, J. Prostate-specific antigen kinetics and outcomes in patients with bone metastases from castration-resistant prostate cancer treated with or without zoledronic acid. Eur. Urol. 65, 146–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, J. E. et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J. Natl Cancer Inst. 97, 59–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Lipton, A. et al. Skeletal-related events and clinical outcomes in patients with bone metastases and normal levels of osteolysis: exploratory analyses. Clin. Oncol. (R. Coll. Radiol.) 25, 217–226 (2013).

    Article  CAS  Google Scholar 

  26. Smith, M. R. et al. Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology 70, 315–319 (2007).

    Article  PubMed  Google Scholar 

  27. de la Piedra, C. et al. Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study. Br. J. Cancer 108, 2565–2572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lipton, A. et al. Normalization of bone markers is associated with improved survival in patients with bone metastases from solid tumors and elevated bone resorption receiving zoledronic acid. Cancer 113, 193–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Stoch, S. A. et al. Bone loss in men with prostate cancer treated with gonadotropin-releasing hormone agonists. J. Clin. Endocrinol. Metab. 86, 2787–2791 (2001).

    CAS  PubMed  Google Scholar 

  30. Lee, H., McGovern, K., Finkelstein, J. S. & Smith, M. R. Changes in bone mineral density and body composition during initial and long-term gonadotropin-releasing hormone agonist treatment for prostate carcinoma. Cancer 104, 1633–1637 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Diamond, T. H., Higano, C. S., Smith, M. R., Guise, T. A. & Singer, F. R. Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy: recommendations for diagnosis and therapies. Cancer 100, 892–899 (2004).

    Article  PubMed  Google Scholar 

  32. Shahinian, V. B., Kuo, Y. F., Freeman, J. L. & Goodwin, J. S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 352, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, M. R. et al. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J. Clin. Oncol. 23, 7897–7903 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. López, A. M. et al. Fracture risk in patients with prostate cancer on androgen deprivation therapy. Osteoporos. Int. 16, 707–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Beebe-Dimmer, J. L. et al. Timing of androgen deprivation therapy use and fracture risk among elderly men with prostate cancer in the United States. Pharmacoepidemiol. Drug Saf. 21, 70–78 (2012).

    Article  PubMed  Google Scholar 

  36. LeBlanc, E. S. et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J. Clin. Endocrinol. Metab. 94, 3337–3346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Novara, G., Galfano, A., Secco, S., Ficarra, V. & Artibani, W. Impact of surgical and medical castration on serum testosterone level in prostate cancer patients. Urol. Int. 82, 249–255 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Vidal, O., Kindblom, L. G. & Ohlsson, C. Expression and localization of estrogen receptor-beta in murine and human bone. J. Bone Miner. Res. 14, 923–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. [No authors listed] Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause 17, 25–54 (2010).

  40. Smith, M. R., Fallon, M. A., Lee, H. & Finkelstein, J. S. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J. Clin. Endocrinol. Metab. 89, 3841–3846 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, M. R. et al. Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J. Urol. 189 (Suppl. 1), S45–S50 (2013).

    CAS  PubMed  Google Scholar 

  42. Lin, J. H. Bisphosphonates: a review of their pharmacokinetic properties. Bone 18, 75–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Rosen, L. S. et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 7, 377–387 (2001).

    CAS  PubMed  Google Scholar 

  45. Neville-Webbe, H. L. & Coleman, R. E. Bisphosphonates and RANK ligand inhibitors for the treatment and prevention of metastatic bone disease. Eur. J. Cancer 46, 1211–1222 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Michaelson, M. D. et al. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J. Clin. Oncol. 25, 1038–1042 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kachnic, L. A. et al. RTOG 0518: randomized phase III trial to evaluate zoledronic acid for prevention of osteoporosis and associated fractures in prostate cancer patients. Prostate Cancer Prostatic Dis. 16, 382–386 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wadhwa, V. K., Weston, R. & Parr, N. J. Frequency of zoledronic acid to prevent further bone loss in osteoporotic patients undergoing androgen deprivation therapy for prostate cancer. BJU Int. 105, 1082–1088 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, M. R. et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J. Urol. 169, 2008–2012 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Klotz, L. H. et al. A phase 3, double-blind, randomised, parallel-group, placebo-controlled study of oral weekly alendronate for the prevention of androgen deprivation bone loss in nonmetastatic prostate cancer: the Cancer and Osteoporosis Research with Alendronate and Leuprolide (CORAL) study. Eur. Urol. 63, 927–935 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Greenspan, S. L. et al. Skeletal health after continuation, withdrawal, or delay of alendronate in men with prostate cancer undergoing androgen-deprivation therapy. J. Clin. Oncol. 26, 4426–4434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith, M. R. et al. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 345, 948–955 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Morabito, N. et al. Neridronate prevents bone loss in patients receiving androgen deprivation therapy for prostate cancer. J. Bone Miner. Res. 19, 1766–1770 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Dearnaley, D. P., Mason, M. D., Parmar, M. K., Sanders, K. & Sydes, M. R. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 10, 872–876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mason, M. D. et al. Oral sodium clodronate for nonmetastatic prostate cancer--results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J. Natl Cancer Inst. 99, 765–776 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Dearnaley, D. P. et al. A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 Trial). J. Natl Cancer Inst. 95, 1300–1311 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Small, E. J., Smith, M. R., Seaman, J. J., Petrone, S. & Kowalski, M. O. Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J. Clin. Oncol. 21, 4277–4284 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, M. R. et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J. Clin. Oncol. 23, 2918–2925 (2005).

    Article  PubMed  Google Scholar 

  59. Wirth, M. et al. Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: efficacy and safety results of the Zometa European Study (ZEUS). Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2014.02.014 (2014).

  60. Smith, M. R. et al. Effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. J. Urol. 182, 2670–2675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  62. US Food and Drug Administration. Denosumab (prolia) [online], (2011).

  63. Jones, D. H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, M. R. et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J. Clin. Oncol. 30, 3800–3806 (2013).

    Article  Google Scholar 

  66. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. US Food and Drug Administration. Denosumab [online], (2010).

  68. Robinson, R. G. et al. Strontium-89: treatment results and kinetics in patients with painful metastatic prostate and breast cancer in bone. Radiographics 9, 271–281 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Bauman, G., Charette, M., Reid, R. & Sathya, J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother. Oncol. 75, 258–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Henriksen, G., Fisher, D. R., Roeske, J. C., Bruland, O. S. & Larsen, R. H. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J. Nucl. Med. 44, 252–259 (2003).

    CAS  PubMed  Google Scholar 

  71. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Tu, S. M. et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 357, 336–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. James, N. D. et al. Clinical outcomes in patients with castrate-refractory prostate cancer (CRPC) metastatic to bone randomized in the factorial TRAPEZE trial to docetaxel (D) with strontium-89 (Sr89), zoledronic acid (ZA), neither, or both (ISRCTN 12808747) [abstract]. J. Clin. Oncol. 31 (Suppl.), LBA5000 (2013).

    Article  Google Scholar 

  74. Bruland, Ø. S., Nilsson, S., Fisher, D. R. & Larsen, R. H. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin. Cancer Res. 12, 6250s–6257s (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. US Food and Drug Administration. Radium Ra 223 dichloride [online], (2013).

  77. Nelson, J. B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat. Med. 1, 944–949 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Yin, J. J. et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc. Natl Acad. Sci. USA 100, 10954–10959 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saad, F. & Lipton, A. SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat. Rev. 36, 177–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Tatarov, O. et al. SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin. Cancer Res. 15, 3540–3549 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Nelson, J. B. et al. Phase 3, randomized, placebo-controlled study of zibotentan (ZD4054) in patients with castration-resistant prostate cancer metastatic to bone. Cancer 118, 5709–5718 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Fizazi, K. S. et al. Phase III, randomized, placebo-controlled study of docetaxel in combination with zibotentan in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 31, 1740–1747 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Nelson, J. B. et al. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 113, 2478–2487 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Quinn, D. I. et al. Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): a randomised phase 3 trial. Lancet Oncol. 14, 893–900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Araujo, J. C. et al. Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): a randomised, double-blind phase 3 trial. Lancet Oncol. 14, 1307–1316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Logothetis, C. J. et al. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol. 13, 1210–1217 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Saad, F. et al. Impact of concomitant bone-targeted therapies (BTT) on outcomes in metastatic castration-resistant prostate cancer (mCRPC) patients (pts) without prior chemotherapy (ctx) treated with abiraterone acetate (AA) or prednisone (P) [abstract]. J. Clin. Oncol. 31 (Suppl.), a5037 (2013).

    Google Scholar 

  90. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  92. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  93. Smith, D. C. et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J. Clin. Oncol. 31, 412–419 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Dai, J. et al. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin. Cancer Res. 20, 617–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  96. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  97. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  98. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  99. Epstein, J. et al. Postradiation osteonecrosis of the mandible: a long-term follow-up study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 83, 657–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws & American Association of Oral and Maxillofacial Surgeons. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J. Oral Maxillofac. Surg. 65, 369–376 (2007).

  101. Pazianas, M., Miller, P., Blumentals, W. A., Bernal, M. & Kothawala, P. A review of the literature on osteonecrosis of the jaw in patients with osteoporosis treated with oral bisphosphonates: prevalence, risk factors, and clinical characteristics. Clin. Ther. 29, 1548–1558 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Bamias, A. et al. Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J. Clin. Oncol. 23, 8580–8587 (2005).

    Article  PubMed  Google Scholar 

  103. Saad, F. et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann. Oncol. 23, 1341–1347 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Badros, A. et al. Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J. Clin. Oncol. 24, 945–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Ripamonti, C. I. et al. Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan. Ann. Oncol. 20, 137–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Dimopoulos, M. A. et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann. Oncol. 20, 117–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Perazella, M. A. & Markowitz, G. S. Bisphosphonate nephrotoxicity. Kidney Int. 74, 1385–1393 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Chang, J. T., Green, L. & Beitz, J. Renal failure with the use of zoledronic acid. N. Engl. J. Med. 349, 1676–1679 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Block, G. A., Bone, H. G., Fang, L., Lee, E. & Padhi, D. A single-dose study of denosumab in patients with various degrees of renal impairment. J. Bone Miner. Res. 27, 1471–1479 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided a substantial contribution to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Benjamin A. Gartrell.

Ethics declarations

Competing interests

F.S. is a consultant and receives honoraria from Novartis and Amgen. B.A.G. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gartrell, B., Saad, F. Managing bone metastases and reducing skeletal related events in prostate cancer. Nat Rev Clin Oncol 11, 335–345 (2014). https://doi.org/10.1038/nrclinonc.2014.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing