Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and management of TAVR-related complications

Subjects

This article has been updated

Key Points

  • Major complications occur in one-third of patients during the month after transcatheter aortic valve replacement (TAVR)

  • Adequate patient screening and selection, using a 'heart team' approach and multimodality imaging, is important for the prevention of TAVR-related complications

  • Complications should be anticipated during a multidisciplinary evaluation before TAVR, to enable prompt recognition and management should such events occur during the procedure

  • The TAVR team should always be ready to perform immediate percutaneous or surgical rescue interventions in the event of serious TAVR-related complications

  • Growing operator experience and upcoming technological refinements will reduce the incidence of TAVR-related complications in the future

Abstract

Patients with severe aortic stenosis who are at high surgical risk or not considered to be suitable candidates for surgical aortic valve replacement are increasingly being treated with transcatheter aortic valve replacement (TAVR). Although this novel treatment modality has been proven to be effective in this patient population, serious complications oc cur in approximately one-third of patients during the month after the procedure. Such events include myocardial infarction, cerebrovascular events, vascular complications, bleeding, acute kidney injury, valve regurgitation, valve malpositioning, coronary obstruction, and conduction disturbances and arrhythmias, which can all lead to death. Prevention of these complications should be based on patient screening and selection by a dedicated 'heart team' and the use of multimodality imaging. Anticipation and early recognition of these complications, followed by prompt management using a wide range of percutaneous or surgical rescue interventions, is vital to patient outcome. Continuous patient assessment and reporting of complications according to standardized definitions, in addition to growing operator experience and upcoming technological refinements, will hopefully reduce the future rate of complications related to this procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stroke during transcatheter aortic valve replacement.
Figure 2: Embolic protection devices used during transcatheter aortic valve replacement.
Figure 3: Device landing-zone rupture.
Figure 4: Vascular events after transfemoral transcatheter aortic valve replacement.
Figure 5: Paravalvular regurgitation after transcatheter aortic valve replacement.
Figure 6: Valve embolization after transcatheter aortic valve replacement.
Figure 7: Coronary obstruction after transcatheter aortic valve replacement.

Similar content being viewed by others

Change history

  • 06 November 2013

    In the version of this article originally published online, the sentence “The Claret CE Pro system (Claret Medical, Inc., Santa Rosa, CA, USA; Figure 2a) consists of...” should have read “The Claret Montage Dual Filter System (Claret Medical, Inc., Santa Rosa, CA, USA; Figure 2a) consists of...”. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Cribier, A. et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002).

    Article  PubMed  Google Scholar 

  2. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Vahanian, A. et al. Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J. 33, 2451–2496 (2012).

    Article  PubMed  Google Scholar 

  5. Généreux, P. et al. Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: a weighted meta-analysis of 3,519 patients from 16 studies. J. Am. Coll. Cardiol. 59, 2317–2326 (2012).

    Article  PubMed  Google Scholar 

  6. Leon, M. B. et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur. Heart J. 32, 205–217 (2011).

    Article  PubMed  Google Scholar 

  7. Kappetein, A. P. et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Eur. Heart J. 33, 2403–2418 (2012).

    Article  PubMed  Google Scholar 

  8. van der Boon, R. M. et al. New conduction abnormalities after TAVI—frequency and causes. Nat. Rev. Cardiol. 9, 454–463 (2012).

    Article  PubMed  Google Scholar 

  9. Himbert, D. et al. Tools & techniques: transcatheter aortic valve implantation: transfemoral approach. EuroIntervention 6, 784–785 (2011).

    Article  PubMed  Google Scholar 

  10. Eggebrecht, H. et al. Emergent cardiac surgery during transcatheter aortic valve implantation (TAVI): a weighted meta-analysis of 9,251 patients from 46 studies. EuroIntervention 8, 1072–1080 (2013).

    Article  PubMed  Google Scholar 

  11. Khatri, P. J. et al. Adverse effects associated with transcatheter aortic valve implantation: a meta-analysis of contemporary studies. Ann. Intern. Med. 158, 35–46 (2013).

    Article  PubMed  Google Scholar 

  12. Gilard, M. et al. Registry of transcatheter aortic-valve implantation in high-risk patients. N. Engl. J. Med. 366, 1705–1715 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Van Mieghem, N. M. et al. Cause of death after transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.24597.

  14. Rodés-Cabau, J. et al. Incidence, predictive factors, and prognostic value of myocardial injury following uncomplicated transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 57, 1988–1999 (2011).

    Article  PubMed  Google Scholar 

  15. Yong, Z. Y. et al. Predictors and prognostic value of myocardial injury during transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 5, 415–423 (2012).

    Article  PubMed  Google Scholar 

  16. Barbash, I. M. et al. Prevalence and effect of myocardial injury after transcatheter aortic valve replacement. Am. J. Cardiol. 111, 1337–1343 (2013).

    Article  PubMed  Google Scholar 

  17. Dewey, T. M. et al. Effect of concomitant coronary artery disease on procedural and late outcomes of transcatheter aortic valve implantation. Ann. Thorac. Surg. 89, 758–767 (2010).

    Article  PubMed  Google Scholar 

  18. Gasparetto, V. et al. Safety and effectiveness of a selective strategy for coronary artery revascularization before transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 81, 376–383 (2013).

    Article  PubMed  Google Scholar 

  19. Gautier, M. et al. Impact of coronary artery disease on indications for transcatheter aortic valve implantation and on procedural outcomes. EuroIntervention 7, 549–555 (2011).

    Article  PubMed  Google Scholar 

  20. Wenaweser, P. et al. Impact of coronary artery disease and percutaneous coronary intervention on outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation. EuroIntervention 7, 541–548 (2011).

    Article  PubMed  Google Scholar 

  21. van Swieten, J. C., Koudstaal, P. J., Visser, M. C., Schouten, H. J. & van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19, 604–607 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, D. C. et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J. Thorac. Cardiovasc. Surg. 143, 832–843.e13 (2012).

    Article  PubMed  Google Scholar 

  23. Nombela-Franco, L. et al. Timing, predictive factors, and prognostic value of cerebrovascular events in a large cohort of patients undergoing transcatheter aortic valve implantation. Circulation 126, 3041–3053 (2012).

    Article  PubMed  Google Scholar 

  24. Stortecky, S. et al. Cerebrovascular accidents complicating transcatheter aortic valve implantation: frequency, timing and impact on outcomes. EuroIntervention 8, 62–70 (2012).

    Article  PubMed  Google Scholar 

  25. Eggebrecht, H. et al. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention 8, 129–138 (2012).

    Article  PubMed  Google Scholar 

  26. Amat-Santos, I. J. et al. Incidence, predictive factors, and prognostic value of new-onset atrial fibrillation following transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 59, 178–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Omran, H. et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet 361, 1241–1246 (2003).

    Article  PubMed  Google Scholar 

  28. Ghanem, A. et al. Prognostic value of cerebral injury following transfemoral aortic valve implantation. EuroIntervention 8, 1296–1306 (2013).

    Article  PubMed  Google Scholar 

  29. Fairbairn, T. A. et al. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart 98, 18–23 (2012).

    Article  PubMed  Google Scholar 

  30. Kahlert, P. et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation 121, 870–878 (2010).

    Article  PubMed  Google Scholar 

  31. Astarci, P. et al. Cerebral embolization during percutaneous valve implantation does not occur during balloon inflation valvuloplasty: prospective diffusion-weighted brain MRI study. J. Heart Valve Dis. 22, 79–84 (2013).

    PubMed  Google Scholar 

  32. Ghanem, A. et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J. Am. Coll. Cardiol. 55, 1427–1432 (2010).

    Article  PubMed  Google Scholar 

  33. Rodés-Cabau, J. et al. Cerebral embolism following transcatheter aortic valve implantation: comparison of transfemoral and transapical approaches. J. Am. Coll. Cardiol. 57, 18–28 (2011).

    Article  PubMed  Google Scholar 

  34. Kahlert, P. et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation 126, 1245–1255 (2012).

    Article  PubMed  Google Scholar 

  35. Van Mieghem, N. M. et al. Histopathology of embolic debris captured during transcatheter aortic valve replacement. Circulation 127, 2194–2201 (2013).

    Article  PubMed  Google Scholar 

  36. Grube, E. et al. Feasibility of transcatheter aortic valve implantation without balloon pre-dilation: a pilot study. JACC Cardiovasc. Interv. 4, 751–757 (2011).

    Article  PubMed  Google Scholar 

  37. Bagur, R. et al. Transcatheter aortic valve implantation with “no touch” of the aortic arch for the treatment of severe aortic stenosis associated with complex aortic atherosclerosis. J. Card. Surg. 25, 501–503 (2010).

    Article  PubMed  Google Scholar 

  38. Nietlispach, F. et al. An embolic deflection device for aortic valve interventions. JACC Cardiovasc. Interv. 3, 1133–1138 (2010).

    Article  PubMed  Google Scholar 

  39. Bourantas, C. V. et al. Transcatheter aortic valve implantation: new developments and upcoming clinical trials. EuroIntervention 8, 617–627 (2012).

    Article  PubMed  Google Scholar 

  40. Naber, C. K. et al. First-in-man use of a novel embolic protection device for patients undergoing transcatheter aortic valve implantation. EuroIntervention 8, 43–50 (2012).

    Article  PubMed  Google Scholar 

  41. Webb, J. G. & Barbanti, M. Cerebral embolization during transcatheter aortic valve implantation. Circulation 126, 1567–1569 (2012).

    Article  PubMed  Google Scholar 

  42. Van Mieghem, N. M. et al. Transcatheter aortic valve replacement and vascular complications definitions. EuroIntervention [online].

  43. Mussardo, M. et al. Periprocedural and short-term outcomes of transfemoral transcatheter aortic valve implantation with the Sapien XT as compared with the Edwards Sapien valve. JACC Cardiovasc. Interv. 4, 743–750 (2011).

    Article  PubMed  Google Scholar 

  44. Généreux, P. et al. Vascular complications after transcatheter aortic valve replacement: insights from the PARTNER (Placement of AoRTic TraNscathetER Valve) trial. J. Am. Coll. Cardiol. 60, 1043–1052 (2012).

    Article  PubMed  Google Scholar 

  45. Hayashida, K. et al. Transfemoral aortic valve implantation new criteria to predict vascular complications. JACC Cardiovasc. Interv. 4, 851–858 (2011).

    Article  PubMed  Google Scholar 

  46. Van Mieghem, N. M. et al. Trends in outcome after transfemoral transcatheter aortic valve implantation. Am. Heart J. 165, 183–192 (2013).

    Article  PubMed  Google Scholar 

  47. Ducrocq, G. et al. Vascular complications of transfemoral aortic valve implantation with the Edwards SAPIEN prosthesis: incidence and impact on outcome. EuroIntervention 6, 666–672 (2010).

    Article  Google Scholar 

  48. Hayashida, K. et al. True percutaneous approach for transfemoral aortic valve implantation using the Prostar XL device: impact of learning curve on vascular complications. JACC Cardiovasc. Interv. 5, 207–214 (2012).

    Article  PubMed  Google Scholar 

  49. Pasic, M. et al. Rupture of the device landing zone during transcatheter aortic valve implantation: a life-threatening but treatable complication. Circ. Cardiovasc. Interv. 5, 424–432 (2012).

    Article  PubMed  Google Scholar 

  50. Barbanti, M. et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation 128, 244–253 (2013).

    Article  PubMed  Google Scholar 

  51. Martinez, M. I., Garcia, H. G. & Calvar, J. A. Interventricular septum rupture after transcatheter aortic valve implantation. Eur. Heart J. 33, 190 (2012).

    Article  Google Scholar 

  52. Blanke, P. et al. Prosthesis oversizing in balloon-expandable transcatheter aortic valve implantation is associated with contained rupture of the aortic root. Circ. Cardiovasc. Interv. 5, 540–548 (2012).

    Article  PubMed  Google Scholar 

  53. Borz, B. et al. Incidence, predictors and impact of bleeding after transcatheter aortic valve implantation using the balloon-expandable Edwards prosthesis. Heart 99, 860–865 (2013).

    Article  PubMed  Google Scholar 

  54. Pilgrim, T., Stortecky, S., Luterbacher, F., Windecker, S. & Wenaweser, P. Transcatheter aortic valve implantation and bleeding: incidence, predictors and prognosis. J. Thromb. Thrombolysis 35, 456–462 (2013).

    Article  PubMed  Google Scholar 

  55. Amabile, N. et al. Incidence, predictors and prognostic value of serious hemorrhagic complications following transcatheter aortic valve implantation. Int. J. Cardiol. 168, 151–156 (2013). .

    Article  PubMed  Google Scholar 

  56. Tchetche, D. et al. Adverse impact of bleeding and transfusion on the outcome post-transcatheter aortic valve implantation: insights from the Pooled-RotterdAm-Milano-Toulouse In Collaboration Plus (PRAGMATIC Plus) initiative. Am. Heart J. 164, 402–409 (2012).

    Article  PubMed  Google Scholar 

  57. Rezq, A. et al. Incidence, management, and outcomes of cardiac tamponade during transcatheter aortic valve implantation: a single-center study. JACC Cardiovasc. Interv. 5, 1264–1272 (2012).

    Article  PubMed  Google Scholar 

  58. Takagi, H., Niwa, M., Mizuno, Y., Goto, S. N. & Umemoto, T. Incidence, predictors, and prognosis of acute kidney injury after transcatheter aortic valve implantation: a summary of contemporary studies using Valve Academic Research Consortium definitions. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2013.01.273.

  59. Khawaja, M. Z. et al. The effects of VARC-defined acute kidney injury after transcatheter aortic valve implantation (TAVI) using the Edwards bioprosthesis. EuroIntervention 8, 563–570 (2012).

    Article  PubMed  Google Scholar 

  60. Nuis, R. J. et al. Blood transfusion and the risk of acute kidney injury after transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 5, 680–688 (2012).

    Article  PubMed  Google Scholar 

  61. Bagur, R. et al. Acute kidney injury following transcatheter aortic valve implantation: predictive factors, prognostic value, and comparison with surgical aortic valve replacement. Eur. Heart J. 31, 865–874 (2010).

    Article  PubMed  Google Scholar 

  62. Jabbour, A. et al. Multimodality imaging in transcatheter aortic valve implantation and post-procedural aortic regurgitation: comparison among cardiovascular magnetic resonance, cardiac computed tomography, and echocardiography. J. Am. Coll. Cardiol. 58, 2165–2173 (2011).

    Article  PubMed  Google Scholar 

  63. Zamorano, J. L. et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur. J. Echocardiogr. 12, 557–584 (2011).

    Article  PubMed  Google Scholar 

  64. Zoghbi, W. A. et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound: a report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 22, 975–1014 (2009).

    Article  PubMed  Google Scholar 

  65. Lerakis, S., Hayek, S. S. & Douglas, P. S. Paravalvular aortic leak after transcatheter aortic valve replacement: current knowledge. Circulation 127, 397–407 (2013).

    Article  PubMed  Google Scholar 

  66. Michel, P. L., Vahanian, A., Besnainou, F. & Acar, J. Value of qualitative angiographic grading in aortic regurgitation. Eur. Heart J. 8 (Suppl. C), 11–14 (1987).

    Article  PubMed  Google Scholar 

  67. Sinning, J. M. et al. Aortic regurgitation index defines severity of peri-prosthetic regurgitation and predicts outcome in patients after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 59, 1134–1141 (2012).

    Article  PubMed  Google Scholar 

  68. Athappan, G. et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J. Am. Coll. Cardiol. 61, 1585–1595 (2013).

    Article  PubMed  Google Scholar 

  69. Généreux, P. et al. Paravalvular leak after transcatheter aortic valve replacement: the new Achilles' heel? A comprehensive review of the literature. J. Am. Coll. Cardiol. 61, 1125–1136 (2013).

    Article  PubMed  Google Scholar 

  70. Sinning, J. M. et al. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 62, 11–20 (2013).

    Article  PubMed  Google Scholar 

  71. Al-Attar, N., Himbert, D., Vahanian, A. & Nataf, P. Severe intraprosthetic regurgitation by immobile leaflet after trans-catheter aortic valve implantation. Eur. J. Cardiothorac. Surg. 39, 591–592 (2011).

    Article  PubMed  Google Scholar 

  72. Agostoni, P., Buijsrogge, M. P. & Stella, P. R. “Frozen” leaflet: a dreadful complication of transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 5, 321–323 (2012).

    Article  PubMed  Google Scholar 

  73. Willson, A. B. et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J. Cardiovasc. Comput. Tomogr. 6, 406–414 (2012).

    Article  PubMed  Google Scholar 

  74. Binder, R. K. et al. The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J. Am. Coll. Cardiol. 62, 431–438 (2013).

    Article  PubMed  Google Scholar 

  75. Schultz, C. J. et al. Three dimensional evaluation of the aortic annulus using multislice computer tomography: are manufacturer's guidelines for sizing for percutaneous aortic valve replacement helpful? Eur. Heart J. 31, 849–856 (2010).

    Article  PubMed  Google Scholar 

  76. Hayashida, K. et al. Impact of CT-guided valve sizing on post-procedural aortic regurgitation in transcatheter aortic valve implantation. EuroIntervention 8, 546–555 (2012).

    Article  PubMed  Google Scholar 

  77. Dvir, D. et al. Multicenter evaluation of Edwards SAPIEN positioning during transcatheter aortic valve implantation with correlates for device movement during final deployment. JACC Cardiovasc. Interv. 5, 563–570 (2012).

    Article  PubMed  Google Scholar 

  78. Binder, R. K. et al. Transcatheter aortic valve replacement with the SAPIEN 3: a new balloon-expandable transcatheter heart valve. JACC Cardiovasc. Interv. 6, 293–300 (2013).

    Article  PubMed  Google Scholar 

  79. Ussia, G. P. et al. Transcatheter aortic bioprosthesis dislocation: technical aspects and midterm follow-up. EuroIntervention 7, 1285–1292 (2012).

    Article  PubMed  Google Scholar 

  80. Sinning, J. M., Vasa-Nicotera, M., Werner, N., Nickenig, G. & Hammerstingl, C. Interventional closure of paravalvular leakage after transcatheter aortic valve implantation. Eur. Heart J. 33, 2498 (2012).

    Article  PubMed  Google Scholar 

  81. Clavel, M. A. et al. Severe valvular regurgitation and late prosthesis embolization after percutaneous aortic valve implantation. Ann. Thorac. Surg. 87, 618–621 (2009).

    Article  PubMed  Google Scholar 

  82. Pang, P. Y., Chiam, P. T., Chua, Y. L. & Sin, Y. K. A survivor of late prosthesis migration and rotation following percutaneous transcatheter aortic valve implantation. Eur. J. Cardiothorac. Surg. 41, 1195–1196 (2012).

    Article  PubMed  Google Scholar 

  83. Makkar, R. R. et al. Determinants and outcomes of acute transcatheter valve-in-valve therapy or embolization: a study of multiple valve implants in the US PARTNER trial (Placement of AoRTic TraNscathetER Valve Trial Edwards SAPIEN Transcatheter Heart Valve). J. Am. Coll. Cardiol. 62, 418–430 (2013).

    Article  PubMed  Google Scholar 

  84. Tay, E. L. et al. Outcome of patients after transcatheter aortic valve embolization. JACC Cardiovasc. Interv. 4, 228–234 (2011).

    Article  PubMed  Google Scholar 

  85. Dumonteil, N. et al. Left ventricular embolization of an aortic balloon-expandable bioprosthesis: balloon capture and reimpaction as an alternative to emergent conversion to open-heart surgery. JACC Cardiovasc. Interv. 6, 308–310 (2013).

    Article  PubMed  Google Scholar 

  86. Dvir, D. et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation 126, 2335–2344 (2012).

    Article  PubMed  Google Scholar 

  87. Ribeiro, H. B. et al. Coronary obstruction following transcatheter aortic valve implantation: a systematic review. JACC Cardiovasc. Interv. 6, 452–461 (2013).

    Article  PubMed  Google Scholar 

  88. Holmes, D. R. Jr et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 59, 1200–1254 (2012).

    Article  PubMed  Google Scholar 

  89. Himbert, D. et al. Results of transfemoral or transapical aortic valve implantation following a uniform assessment in high-risk patients with aortic stenosis. J. Am. Coll. Cardiol. 54, 303–311 (2009).

    Article  PubMed  Google Scholar 

  90. Stabile, E. et al. Acute left main obstructions following TAVI. EuroIntervention 6, 100–105 (2010).

    Article  PubMed  Google Scholar 

  91. Bourantas, C. V. et al. Transcatheter aortic valve implantation: new developments and upcoming clinical trials. EuroIntervention 8, 617–627 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.-A. Fassa, researched data for the article. All the authors contributed to the discussion of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Alec Vahanian.

Ethics declarations

Competing interests

A. Vahanian has received consulting fees/honoraria from Abbott, Edwards Lifesciences, Medtronic, and Valtech. D. Himbert is Proctor for Edwards Lifesciences and Medtronic. A.-A. Fassa declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassa, AA., Himbert, D. & Vahanian, A. Mechanisms and management of TAVR-related complications. Nat Rev Cardiol 10, 685–695 (2013). https://doi.org/10.1038/nrcardio.2013.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing