Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Optical imaging for cervical cancer detection: solutions for a continuing global problem

Abstract

Cervical cancer is the leading cause of cancer death for women in developing countries. Optical technologies can improve the accuracy and availability of cervical cancer screening. For example, battery-powered digital cameras can obtain multi-spectral images of the entire cervix, highlighting suspicious areas, and high-resolution optical technologies can further interrogate such areas, providing in vivo diagnosis with high sensitivity and specificity. In addition, targeted contrast agents can highlight changes in biomarkers of cervical neoplasia. Such advances should provide a much needed global approach to cervical cancer prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current and future cervical screening techniques.
Figure 2: The development of cervical precancer leads to changes in the optical properties of both the epithelium and the stroma.
Figure 3: Wide-field imaging and spectroscopy.

Similar content being viewed by others

References

  1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    PubMed  Google Scholar 

  2. Koss, L. G. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 261, 737–743 (1989).

    CAS  PubMed  Google Scholar 

  3. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    CAS  PubMed  Google Scholar 

  4. Cohen, J. Public health. High hopes and dilemmas for a cervical cancer vaccine. Science 308, 618–621 (2005).

    CAS  PubMed  Google Scholar 

  5. Agosti, J. M. & Goldie, S. J. Introducing HPV vaccine in developing countries — key challenges and issues. N. Engl. J. Med. 356, 1908–1910 (2007).

    CAS  PubMed  Google Scholar 

  6. Mitchell, M. F., Schottenfeld, D., Tortolero-Luna, G., Cantor, S. B. & Richards-Kortum, R. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. Obstet. Gynecol. 91, 626–631 (1998).

    CAS  PubMed  Google Scholar 

  7. Goldie, S. J. et al. Cost-effectiveness of cervical-cancer screening in five developing countries. N. Engl. J. Med. 353, 2158–2168 (2005).

    CAS  PubMed  Google Scholar 

  8. Sankaranarayanan, R. et al. Visual inspection of the uterine cervix after the application of acetic acid in the detection of cervical carcinoma and its precursors. Cancer 83, 2150–2156 (1998).

    CAS  PubMed  Google Scholar 

  9. Sankaranarayanan, R. et al. Effect of visual screening on cervical cancer incidence and mortality in Tamil Nadu, India: a cluster-randomised trial. Lancet 370, 398–406 (2007).

    Google Scholar 

  10. Jeronimo, J. et al. Visual inspection with acetic acid for cervical cancer screening outside of low-resource settings. Rev. Panam. Salud Publica 17, 1–5 (2005).

    PubMed  Google Scholar 

  11. Sankaranarayanan, R., Gaffikin, L., Jacob, M., Sellors, J. & Robles, S. A critical assessment of screening methods for cervical neoplasia. Int. J. Gynecol. Obstet. 89 (Suppl. 2), S4–S12 (2005).

    Google Scholar 

  12. Sankaranarayanan, R. et al. The role of low-level magnification in visual inspection with acetic acid for the early detection of cervical neoplasia. Cancer Detect Prev. 28, 345–351 (2004).

    PubMed  Google Scholar 

  13. Denny, L., Kuhn, L., Pollack, A. & Wright, T. C. Jr. Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance. Cancer 94, 1699–1707 (2002).

    PubMed  Google Scholar 

  14. Thekkek, N., Martinez, J., Follen, M. & Richards-Kortum, R. Digital imaging aid for the early detection of cervical cancer in low resource settings. Biomed. Eng. Soc. 2007 Annu. Fall Meet. (Los Angeles, California, 2007).

  15. Park, S. Y. et al. Automated image analysis of digital colposcopy for the detection of cervical intraepithelial neoplasia. J. Biomed. Opt. 13, 014029 (2008).

    PubMed  Google Scholar 

  16. Cristoforoni, P. M. et al. Computerized colposcopy: results of a pilot study and analysis of its clinical relevance. Obstet. Gynecol. 85, 1011–1016 (1995).

    CAS  PubMed  Google Scholar 

  17. Mikhail, M. S., Palan, P. R., Basu, J. & Romney, S. L. Computerized measurement of intercapillary distance using image analysis in women with cervical intraepithelial neoplasia: correlation with severity. Acta Obstet. Gynecol. Scand. 83, 308–310 (2004).

    PubMed  Google Scholar 

  18. Drezek, R. A. et al. Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Amer. J. Obstet. Gynecol. 182, 1135–1139 (2000).

    CAS  Google Scholar 

  19. Skala, M. C. et al. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res. 65, 1180–1186 (2005).

    CAS  PubMed  Google Scholar 

  20. Pavlova, I. et al. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem. Photobiol. 77, 550–555 (2003).

    CAS  PubMed  Google Scholar 

  21. Brookner, C. K. et al. Autofluorescence patterns in short-term cultures of normal cervical tissue. Photochem. Photobiol. 71, 730–736 (2000).

    CAS  PubMed  Google Scholar 

  22. Gulledge, C. J. & Dewhirst, M. W. Tumor oxygenation: a matter of supply and demand. Anticancer Res. 16, 741–749 (1996).

    CAS  PubMed  Google Scholar 

  23. Smith-McCune, K. K. & Weidner, N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res. 54, 800–804 (1994).

    CAS  PubMed  Google Scholar 

  24. Guidi, A. J. et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J. Natl Cancer Inst. 87, 1237–1245 (1995).

    CAS  PubMed  Google Scholar 

  25. Davidson, B. et al. Expression of matrix metalloproteinase-9 in squamous cell carcinoma of the uterine cervix-clinicopathologic study using immunohistochemistry and mRNA in situ hybridization. Gynecol. Oncol. 72, 380–386 (1999).

    CAS  PubMed  Google Scholar 

  26. Triratanachat, S., Niruthisard, S., Trivijitsilp, P., Tresukosol, D. & Jarurak, N. Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance. Int. J. Gynecol. Cancer 16, 575–580 (2006).

    CAS  PubMed  Google Scholar 

  27. Zuluaga, A. F. et al. Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension. J. Biomed. Opt. 7, 398–403 (2002).

    CAS  PubMed  Google Scholar 

  28. Collier, T., Follen, M., Malpica, A. & Richards-Kortum, R. Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Appl. Opt. 44, 2072–2081 (2005).

    PubMed  Google Scholar 

  29. Collier, T., Guillaud, M., Follen, M., Malpica, A. & Richards-Kortum, R. Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer. J. Biomed. Opt. 12, 024021 (2007).

    PubMed  Google Scholar 

  30. Drezek, R. et al. Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. J. Biomed. Opt. 8, 7–16 (2003).

    PubMed  Google Scholar 

  31. Arifler, D. et al. Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition. J. Biomed. Opt. 8, 484–494 (2003).

    PubMed  Google Scholar 

  32. Arifler, D., MacAulay, C., Follen, M. & Richards-Kortum, R. Spatially resolved reflectance spectroscopy for diagnosis of cervical pre-cancer: Monte Carlo modeling and comparison to clinical measurements. J. Biomed. Opt. 11, 064027 (2006).

    PubMed  Google Scholar 

  33. Drezek, R. et al. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem. Photobiol. 73, 636–641 (2001).

    CAS  PubMed  Google Scholar 

  34. Lohmann, W., Mussmann, J., Lohmann, C. & Kunzel, W. Native fluorescence of unstained cryo-sections of the cervix uteri compared with histological observations. Naturwissenschaften 76, 125–127 (1989).

    CAS  PubMed  Google Scholar 

  35. Mujat, C. et al. Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells. Int. J. Cancer 122, 363–371 (2008).

    CAS  PubMed  Google Scholar 

  36. DaCosta, R. S., Wilson, B. C. & Marcon, N. E. Fluorescence and spectral imaging. ScientificWorldJournal 7, 2046–2071 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Perelman, L. T. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection. Expert Rev. Med. Devices 3, 787–803 (2006).

    PubMed  Google Scholar 

  38. Ramanujam, N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2, 89–117 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Balas, C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans. Biomed. Eng. 48, 96–104 (2001).

    CAS  PubMed  Google Scholar 

  40. Pogue, B. W. et al. Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions. J. Biomed. Opt. 6, 397–403 (2001).

    CAS  PubMed  Google Scholar 

  41. Orfanoudaki, I. M. et al. A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system. Gynecol. Oncol. 96, 119–131 (2005).

    PubMed  Google Scholar 

  42. Benavides, J. M. et al. Multispectral digital colposcopy for in vivo detection of cervical cancer. Opt. Express 11, 1223–1236 (2003).

    PubMed  Google Scholar 

  43. Milbourne, A. et al. Results of a pilot study of multispectral digital colposcopy for the in vivo detection of cervical intraepithelial neoplasia. Gynecol. Oncol. 99, S67–75 (2005).

    PubMed  Google Scholar 

  44. Huh, W. K. et al. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study. Am. J. Obstet. Gynecol. 190, 1249–1257 (2004).

    PubMed  Google Scholar 

  45. Alvarez, R. D. & Wright, T. C. Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol. Oncol. 104, 281–289 (2007).

    CAS  PubMed  Google Scholar 

  46. Ferris, D. G. et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J. Low. Genit. Tract Dis. 5, 65–72 (2001).

    CAS  PubMed  Google Scholar 

  47. DeSantis, T. et al. Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J. Low. Genit. Tract Dis. 11, 18–24 (2007).

    PubMed  Google Scholar 

  48. Alvarez, R. D. & Wright, T. C. Jr. Increased detection of high-grade cervical intraepithelial neoplasia utilizing an optical detection system as an adjunct to colposcopy. Gynecol. Oncol. 106, 23–28 (2007).

    PubMed  Google Scholar 

  49. Kendrick, J. E., Huh, W. K. & Alvarez, R. D. LUMA cervical imaging system. Expert Rev. Med. Devices 4, 121–129 (2007).

    PubMed  Google Scholar 

  50. Mirabal, Y. N. et al. Reflectance spectroscopy for in vivo detection of cervical precancer. J. Biomed. Opt. 7, 587–594 (2002).

    PubMed  Google Scholar 

  51. Chang, S. K. et al. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J. Biomed. Opt. 10, 024031 (2005).

    PubMed  Google Scholar 

  52. Georgakoudi, I. et al. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am. J. Obstet. Gynecol. 186, 374–382 (2002).

    PubMed  Google Scholar 

  53. Mourant, J. R. et al. In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol. Oncol. 105, 439–445 (2007).

    PubMed  Google Scholar 

  54. Wang, A., Nammalavar, V. & Drezek, R. Targeting spectral signatures of progressively dysplastic stratified epithelia using angularly variable fiber geometry in reflectance Monte Carlo simulations. J. Biomed. Opt. 12, 044012 (2007).

    PubMed  Google Scholar 

  55. Arifler, D., Schwarz, R. A., Chang, S. K. & Richards-Kortum, R. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. Appl. Opt. 44, 4291–4305 (2005).

    PubMed  PubMed Central  Google Scholar 

  56. Ramanujam, N. et al. Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN). Gynecol. Oncol. 52, 31–38 (1994).

    CAS  PubMed  Google Scholar 

  57. Ramanujam, N. et al. Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochem. Photobiol. 64, 720–735 (1996).

    CAS  PubMed  Google Scholar 

  58. Chang, S. K. et al. Optimal excitation wavelengths for discrimination of cervical neoplasia. IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).

    PubMed  Google Scholar 

  59. Weingandt, H. et al. Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia. Br. J. Obstet. Gynecol. 109, 947–951 (2002).

    Google Scholar 

  60. Drezek, R. et al. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J. Biomed. Opt. 6, 385–396 (2001).

    CAS  PubMed  Google Scholar 

  61. Chang, S. K., Arifler, D., Drezek, R., Follen, M. & Richards-Kortum, R. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements. J. Biomed. Opt. 9, 511–522 (2004).

    PubMed  Google Scholar 

  62. Georgakoudi, I. et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62, 682–687 (2002).

    CAS  PubMed  Google Scholar 

  63. Brookner, C. K., Utzinger, U., Staerkel, G., Richards-Kortum, R. & Mitchell, M. F. Cervical fluorescence of normal women. Lasers Surg. Med. 24, 29–37 (1999).

    CAS  PubMed  Google Scholar 

  64. Nordstrom, R. J., Burke, L., Niloff, J. M. & Myrtle, J. F. Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg. Med. 29, 118–127 (2001).

    CAS  PubMed  Google Scholar 

  65. Pavlova, I., Williams, M., El-Naggar, A., Richards-Kortum, R. & Gillenwater, A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: High resolution fluorescence microscopy in viable tissue. Clin. Cancer Res. 8, 2396–2404 (2008).

    Google Scholar 

  66. Collier, T., Lacy, A., Richards-Kortum, R., Malpica, A. & Follen, M. Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. Acad. Radiol. 9, 504–512 (2002).

    PubMed  Google Scholar 

  67. Evans, J. A. & Nishioka, N. S. Endoscopic confocal microscopy. Curr. Opin. Gastroenterol. 21, 578–584 (2005).

    PubMed  Google Scholar 

  68. MacAulay, C., Lane, P. & Richards-Kortum, R. In vivo pathology: microendoscopy as a new endoscopic imaging modality. Gastrointest. Endosc. Clin. N. Am. 14, 595–620, xi (2004).

    PubMed  Google Scholar 

  69. Collier, T., Shen, P., de Pradier, B. & Richards-Kortum, R. Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation. Opt. Express 6, 40–48 (2000).

    CAS  PubMed  Google Scholar 

  70. Luck, B. L., Carlson, K. D., Bovik, A. C. & Richards-Kortum, R. R. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue. IEEE Trans. Image Process. 14, 1265–1276 (2005).

    PubMed  Google Scholar 

  71. Sung, K. B. et al. Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved. J. Microsc. 207 (Pt 2), 137–145 (2002).

    CAS  PubMed  Google Scholar 

  72. Tan, J., Delaney, P. & McLaren, W. J. Confocal endomicroscopy: a novel imaging technique for in vivo histology of cervical intraepithelial neoplasia. Expert Rev. Med. Devices 4, 863–871 (2007).

    PubMed  Google Scholar 

  73. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    PubMed  Google Scholar 

  74. Sokolov, K. et al. Optical systems for in vivo molecular imaging of cancer. Technol. Cancer Res. Treat 2, 491–504 (2003).

    CAS  PubMed  Google Scholar 

  75. Hsiung, P. L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Med. 14, 454–458 (2008).

    CAS  PubMed  Google Scholar 

  76. Koyama, Y. et al. In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 9, 1021–1029 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Adams, K. E. et al. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J. Biomed. Opt. 12, 024017 (2007).

    PubMed  Google Scholar 

  78. Aaron, J. et al. Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J. Biomed. Opt. 12 (2007).

  79. Sokolov, K. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2003).

    CAS  PubMed  Google Scholar 

  80. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).

    CAS  Google Scholar 

  81. Nida, D. L., Rahman, M. S., Carlson, K. D., Richards-Kortum, R. & Follen, M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol. Oncol. 99, S89–S94 (2005).

    CAS  PubMed  Google Scholar 

  82. Cuenca, A. G. et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459–466 (2006).

    CAS  PubMed  Google Scholar 

  83. Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L. & Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2, 1412–1417 (2006).

    CAS  PubMed  Google Scholar 

  84. Nitin, N., Javier, D. J., Roblyer, D. M. & Richards-Kortum, R. Widefield and high-resolution reflectance imaging of gold and silver nanospheres. J. Biomed. Opt. 12, 051505 (2007).

    PubMed  Google Scholar 

  85. Aslan, K., Zhang, J., Lakowicz, J. R. & Geddes, C. D. Saccharide sensing using gold and silver nanoparticles — a review. J. Fluoresc. 14, 391–400 (2004).

    CAS  PubMed  Google Scholar 

  86. Vizcaino, A. P. et al. International trends in incidence of cervical cancer: II. Squamous-cell carcinoma. Int. J. Cancer 86, 429–435 (2000).

    CAS  PubMed  Google Scholar 

  87. Roblyer, D., Richards-Kortum, R., Park, S. Y., Adewole, I. & Follen, M. Objective screening for cervical cancer in developing nations: lessons from Nigeria. Gynecol. Oncol. 107, S94–97 (2007).

    PubMed  Google Scholar 

  88. Muldoon, T. et al. High resolution imaging in Barrett's esophagus: a novel, low-cost endoscopic microscope. Gastrointest. Endosc. (in the press).

  89. Visual inspection with acetic acid for cervical-cancer screening: test qualities in a primary-care setting. University of Zimbabwe/JHPIEGO Cervical Cancer Project. Lancet 353, 869–873 (1999).

  90. Denny, L., Kuhn, L., Pollack, A., Wainwright, H. & Wright, T. C. Jr. Evaluation of alternative methods of cervical cancer screening for resource-poor settings. Cancer 89, 826–833 (2000).

    CAS  PubMed  Google Scholar 

  91. Belinson, J. L. et al. Cervical cancer screening by simple visual inspection after acetic acid. Obstet. Gynecol. 98, 441–444 (2001).

    CAS  PubMed  Google Scholar 

  92. Cronje, H. S. et al. A comparison of four screening methods for cervical neoplasia in a developing country. Am. J. Obstet. Gynecol. 188, 395–400 (2003).

    PubMed  Google Scholar 

  93. Sankaranarayanan, R. et al. Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa. Int. J. Cancer 110, 907–913 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of a National Institutes of Health Bioengineering Research Partnerships grant (CA103830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Richards-Kortum.

Ethics declarations

Competing interests

R. R.-K. has an ownership stake in Remicalm, Inc. and serves as an unpaid member of its Scientific Advisory Board.

Related links

Related links

DATABASES

National Cancer Institute

cervical cancer

FURTHER INFORMATION

R. Richard-Kortum's homepage

Beyond Traditional Borders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thekkek, N., Richards-Kortum, R. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer 8, 725–731 (2008). https://doi.org/10.1038/nrc2462

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing