Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The promise of genetically engineered mice for cancer prevention studies

Key Points

  • Identifying effective cancer chemopreventive agents will significantly reduce cancer morbidity and mortality, especially in high-risk individuals.

  • Genetically engineered mouse (GEM) models of cancer must be assessed carefully for their relevance to human disease and for their predictive power for determining a cancer-prevention response in humans.

  • Relatively fast and inexpensive testing of selected compounds can be performed using appropriate mouse models.

  • Stage-specific responses to chemopreventive agents can be determined using GEM models, unlike TUMOUR XENOGRAFT models.

  • Combination therapies targeting multiple oncogenic pathways can be performed readily in mouse models.

  • GEM colon cancer models can be used to study the effects of chemopreventive agents on tumours arising from genetic lesions that are associated with multi-step carcinogenesis.

  • Mammary cancer mouse models have demonstrated that certain preventive agents might prevent the transition from pre-invasive to invasive carcinoma.

  • Nutritional supplements that target different molecular pathways are effective in a prostate cancer model.

  • The ultimate goal remains the establishment of improved models that can be used for the predictive testing of preventive responses in humans.

Abstract

Sophisticated genetic technologies have led to the development of mouse models of human cancers that recapitulate important features of human oncogenesis. Many of these genetically engineered mouse models promise to be very relevant and relatively rapid systems for determining the efficacy of chemopreventive agents and their mechanisms of action. The validation of such models for chemoprevention will help the selection of appropriate agents for large-scale clinical trials and allow the testing of combination therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for using genetically engineered mouse models for testing preventive agents.
Figure 2: Genetically engineered mouse models of intestinal cancer based on mutations occuring during multi-step oncogenesis.
Figure 3: Molecular pathways relevant to colon cancer prevention in genetically engineered mouse models.
Figure 4: Molecular pathways relevant to mammary cancer prevention in genetically engineered mouse models.

Similar content being viewed by others

References

  1. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998). Major study demonstrating that the anti-oestrogen tamoxifen could significantly reduce the incidence of oestrogen receptor-positive breast cancer in women at increased risk.

    Article  CAS  PubMed  Google Scholar 

  2. Sporn, M. B. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 36, 2699–2702 (1976). First published report to indicate that chemoprevention approaches might reduce cancer incidence.

    CAS  PubMed  Google Scholar 

  3. Dannenberg, A. J. & Zakim, D. Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Semin. Oncol. 26, 499–504 (1999).

    CAS  PubMed  Google Scholar 

  4. Klein, E. A. et al. SELECT: the selenium and vitamin E cancer prevention trial. Urol. Oncol. 21, 59–65 (2003). Description of a large, ongoing, long-term, prospective human trial to assess whether selenium or vitamin E can prevent prostate cancer. This demonstrates the logistical and expensive nature of such types of human clinical trials.

    Article  CAS  PubMed  Google Scholar 

  5. Cardiff, R. D. et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19, 968–988 (2000). First major study to report a consensus between human and veterinary pathologists in describing the mammary cancer pathology of genetically engineered mice with human breast cancer pathology.

    Article  CAS  PubMed  Google Scholar 

  6. Shappell, S. B. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64, 2270–2305 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Boivin, G. P. et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124, 762–777 (2003).

    Article  PubMed  Google Scholar 

  8. Weaver, Z. et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097–5107 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Desai, K. V. et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc. Natl Acad. Sci. USA 99, 6967–6972 (2002). First study to demonstrate that gene-expression signatures can distinguish mouse mammary cancers from several transgenic models based on the initiating genetic alteration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hunter, K., Welch, D. R. & Liu, E. T. Genetic background is an important determinant of metastatic potential. Nature Genet. 34, 23–24; author reply 25 (2003). Provocative finding that gene expression changes that are correlated with a high incidence mouse mammary cancer metastases based on the genetic background follow a similar pattern as a gene expression signature for human metastases.

    Article  CAS  PubMed  Google Scholar 

  12. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Balmain, A. & Nagase, H. Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet. 14, 139–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Dragani, T. A. 10 years of mouse cancer modifier loci: human relevance. Cancer Res. 63, 3011–3018 (2003).

    CAS  PubMed  Google Scholar 

  17. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  18. Riethmuller, G. & Klein, C. A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol. 11, 307–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Green, J. E. et al. 2-difluoromethylornithine and dehydroepiandrosterone inhibit mammary tumor progression but not mammary or prostate tumor initiation in C3(1)/SV40 T/t-antigen transgenic mice. Cancer Res. 61, 7449–7455 (2001).

    CAS  PubMed  Google Scholar 

  20. Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, X. et al. Ornithine decarboxylase is a target for chemoprevention of basal and squamous cell carcinomas in Ptch1+/− mice. J. Clin. Invest. 113, 867–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Demierre, M. -F. & Merlino, G. Chemoprevention of Melanoma. Curr. Oncol. Rep. 6, 406–413 (2004).

    Article  PubMed  Google Scholar 

  23. Lubet, R. A., Zhang, Z., Wang, Y. & You, M. Chemoprevention of lung cancer in transgenic mice. Chest 125, 144S–147S (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Jin, L. et al. Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res. 59, 3991–3997 (1999).

    CAS  PubMed  Google Scholar 

  25. Padua, R. A. et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nature Med. 9, 1413–1417 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Torrance, C. J. et al. Combinatorial chemoprevention of intestinal neoplasia. Nature Med. 6, 1024–1028 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl Acad. Sci. USA 92, 4482–4486 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smits, R. et al. Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis 18, 321–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iinuma, T. et al. Prevention of gastrointestinal tumors based on adenomatous polyposis coli gene mutation by dendritic cell vaccine. J. Clin. Invest. 113, 1307–1317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel, A. C., Nunez, N. P., Perkins, S. N., Barrett, J. C. & Hursting, S. D. Effects of energy balance on cancer in genetically altered mice. J. Nutr. 134, 3394S–3398S (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Mai, V. et al. Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in ApcMin mice through different mechanisms. Cancer Res. 63, 1752–1755 (2003).

    CAS  PubMed  Google Scholar 

  36. Colbert, L. H. et al. Exercise and intestinal polyp development in APCMin mice. Med. Sci. Sports Exerc. 35, 1662–1669 (2003).

    Article  PubMed  Google Scholar 

  37. Russo, M. W., Murray, S. C., Wurzelmann, J. I., Woosley, J. T. & Sandler, R. S. Plasma selenium levels and the risk of colorectal adenomas. Nutr. Cancer 28, 125–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Rao, C. V. et al. Chemoprevention of familial adenomatous polyposis development in the Apcmin mouse model by 1, 4-phenylene bis (methylene) selenocynate. Carcinogenesis 21, 617–621 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Gupta, R. A. & DuBois, R. N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Rev. Cancer 1, 11–21 (2001). Excellent review of colon cancer prevention through the inhibition of cyclooxygenase-2.

    Article  CAS  Google Scholar 

  40. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Beazer-Barclay, Y. et al. Sulindac suppresses tumorigenesis in the Min mouse. Carcinogenesis 17, 1757–1760 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Sansom, O. J., Stark, L. A., Dunlop, M. G. & Clarke, A. R. Suppression of intestinal and mammary neoplasia by lifetime administration of aspirin in ApcMin/+ and ApcMin/+, Msh2−/− mice. Cancer Res. 61, 7060–7064 (2001).

    CAS  PubMed  Google Scholar 

  43. MacGregor, D. J., Kim, Y. S., Sleisenger, M. H. & Johnson, L. K. Chemoprevention of colon cancer carcinogenesis by balsalazide: inhibition of azoxymethane-induced aberrant crypt formation in the rat colon and intestinal tumor formation in the B6-Min/+ mouse. Int. J. Oncol. 17, 173–179 (2000).

    CAS  PubMed  Google Scholar 

  44. Jacoby, R. F., Seibert, K., Cole, C. E., Kelloff, G. & Lubet, R. A. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 60, 5040–5044 (2000).

    CAS  PubMed  Google Scholar 

  45. Corpet, D. E. & Pierre, F. Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol. Biomarkers Prev. 12, 391–400 (2003). This paper shows that the effects of preventive agents on gastrointestinal tumorigenesis in the rat axomethane (AOM) model and the mouse Apcmin/+ model correlate well with clinical data indicating that these models might be able to predict the response of preventive agents in humans.

    PubMed  PubMed Central  Google Scholar 

  46. Kitamura, T. et al. Inhibitory effects of mofezolac, a cyclooxygenase-1 selective inhibitor, on intestinal carcinogenesis. Carcinogenesis 23, 1463–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Wechter, W. J. et al. R-flurbiprofen chemoprevention and treatment of intestinal adenomas in the APCMin/+ mouse model: implications for prophylaxis and treatment of colon cancer. Cancer Res. 57, 4316–4324 (1997).

    CAS  PubMed  Google Scholar 

  48. Kennedy, A. R., Beazer-Barclay, Y., Kinzler, K. W. & Newberne, P. M. Suppression of carcinogenesis in the intestines of min mice by the soybean-derived Bowman-Birk inhibitor. Cancer Res. 56, 679–682 (1996).

    CAS  PubMed  Google Scholar 

  49. Paulsen, J. E., Elvsaas, I. K., Steffensen, I. L. & Alexander, J. A fish oil derived concentrate enriched in eicosapentaenoic and docosahexaenoic acid as ethyl ester suppresses the formation and growth of intestinal polyps in the Min mouse. Carcinogenesis 18, 1905–1910 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Petrik, M. B., McEntee, M. F., Johnson, B. T., Obukowicz, M. G. & Whelan, J. Highly unsaturated (n-3) fatty acids, but not alpha-linolenic, conjugated linoleic or gamma-linolenic acids, reduce tumorigenesis in ApcMin/+ mice. J. Nutr. 130, 2434–2443 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Schneider, Y. et al. Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr. Cancer 39, 102–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Song, J., Medline, A., Mason, J. B., Gallinger, S. & Kim, Y. I. Effects of dietary folate on intestinal tumorigenesis in the ApcMin mouse. Cancer Res. 60, 5434–5440 (2000).

    CAS  PubMed  Google Scholar 

  53. Lamprecht, S. A. & Lipkin, M. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nature Rev. Cancer 3, 601–614 (2003).

    Article  CAS  Google Scholar 

  54. Mahmoud, N. N. et al. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis 21, 921–927 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Erdman, S. H. et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 20, 1709–1713 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Perkins, S. et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the Min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev. 11, 535–540 (2002).

    CAS  PubMed  Google Scholar 

  57. Orner, G. A. et al. Response of Apcmin and A33 (Δ N β-cat) mutant mice to treatment with tea, sulindac, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mutat. Res. 506-507, 121–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Jacoby, R. F. et al. Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc mutant Min mouse adenomas, and selective toxicity against Apc mutant embryos. Cancer Res. 60, 1864–1870 (2000).

    CAS  PubMed  Google Scholar 

  59. Reitmair, A. H. et al. Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res. 56, 3842–3849 (1996).

    CAS  PubMed  Google Scholar 

  60. Kuraguchi, M. et al. The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis. Cancer Res. 61, 7934–7942 (2001).

    CAS  PubMed  Google Scholar 

  61. Shoemaker, A. R. et al. Mlh1 deficiency enhances several phenotypes of ApcMin/+ mice. Oncogene 19, 2774–2779 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu, Y., Richardson, J. A., Parada, L. F. & Graff, J. M. Smad3 mutant mice develop metastatic colorectal cancer. Cell 94, 703–714 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Engle, S. J. et al. Elimination of colon cancer in germ-free transforming growth factor β 1-deficient mice. Cancer Res. 62, 6362–6366 (2002).

    CAS  PubMed  Google Scholar 

  65. Guy, C. T. et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89, 10578–10582 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jordan, V. C. Chemosuppression of breast cancer with tamoxifen: laboratory evidence and future clinical investigations. Cancer Invest. 6, 589–595 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Brodie, A. M., Schwarzel, W. C., Shaikh, A. A. & Brodie, H. J. The effect of an aromatase inhibitor, 4-hydroxy-4-androstene-3,17-dione, on estrogen-dependent processes in reproduction and breast cancer. Endocrinology 100, 1684–1695 (1977).

    Article  CAS  PubMed  Google Scholar 

  68. Yoshidome, K., Shibata, M. -A., Couldrey, C., Korach, K. S. & Green, J. E. Estrogen promotes increased mammary tumor development in C3(1)/SV40 Tag transgenic mice: paradoxical loss of ERα expression during tumor development. Cancer Res. 60, 6901–6910 (2000).

    CAS  PubMed  Google Scholar 

  69. Menard, S. et al. Tamoxifen chemoprevention of a hormone-independent tumor in the proto-neu transgenic mice model. Cancer Res. 60, 273–275 (2000).

    CAS  PubMed  Google Scholar 

  70. Medina, D. et al. Hormone dependence in premalignant mammary progression. Cancer Res. 63, 1067–1072 (2003).

    CAS  PubMed  Google Scholar 

  71. Lin, S. C. et al. Somatic mutation of p53 leads to estrogen receptor α-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res. 64, 3525–3532 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kelsey, J. L. & Gammon, M. D. The epidemiology of breast cancer. CA Cancer. J. Clin. 41, 146–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Medina, D. Breast cancer: the protective effect of pregnancy. Clin. Cancer Res. 10, 380S–384S (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Russo, I. H. & Russo, J. Hormonal approach to breast cancer prevention. J. Cell Biochem. Suppl. 34, 1–6 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, K. et al. Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol. Biomarkers Prev. 11, 467–474 (2002).

    CAS  PubMed  Google Scholar 

  76. Rao, G. N., Ney, E. & Herbert, R. A. Changes associated with delay of mammary cancer by retinoid analogues in transgenic mice bearing c-neu oncogene. Breast Cancer Res. Treat. 58, 241–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, Y., Hu, D., Eling, D. J., Robbins, J. & Kipps, T. J. DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors. Cancer Res. 58, 1965–1971 (1998).

    CAS  PubMed  Google Scholar 

  78. Nanni, P. et al. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med. 194, 1195–1205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rovero, S. et al. Insertion of the DNA for the 163-171 peptide of IL1β enables a DNA vaccine encoding p185neu to inhibit mammary carcinogenesis in Her-2/neu transgenic BALB/c mice. Gene Ther. 8, 447–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Knutson, K. L. & Disis, M. L. Expansion of HER2/neu-specific T cells ex vivo following immunization with a HER2/neu peptide-based vaccine. Clin. Breast Cancer 2, 73–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Sypniewska, R. K., Hoflack, L., Bearss, D. J. & Gravekamp, C. Potential mouse tumor model for pre-clinical testing of mage-specific breast cancer vaccines. Breast Cancer Res. Treat. 74, 221–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Manjili, M. H. et al. HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J. Immunol. 171, 4054–4061 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Quaglino, E. et al. Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions. J. Clin. Invest. 113, 709–717 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xia, J. et al. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J. Immunol. 170, 1980–1986 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Howe, L. R. et al. Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res. 62, 5405–5407 (2002).

    CAS  PubMed  Google Scholar 

  86. Finkle, D. et al. HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin. Cancer Res. 10, 2499–2511 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 98, 12485–12490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sacco, M. G. et al. Systemic gene therapy with anti-angiogenic factors inhibits spontaneous breast tumor growth and metastasis in MMTVneu transgenic mice. Gene Ther. 8, 67–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Nanni, P. et al. Prevention of HER-2/neu transgenic mammary carcinoma by tamoxifen plus interleukin 12. Int. J. Cancer. 105, 384–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Sacco, M. G. et al. Combined antiestrogen, antiangiogenic and anti-invasion therapy inhibits primary and metastatic tumor growth in the MMTVneu model of breast cancer. Gene Ther. 10, 1903–1909 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Lu, C. et al. Effect of epidermal growth factor receptor inhibitor on development of estrogen receptor-negative mammary tumors. J. Natl. Cancer Inst. 95, 1825–1833 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J. & Massague, J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl Acad. Sci. USA 100, 8430–8435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, Y. A. et al. Lifetime exposure to a soluble TGFβ antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002). Demonstration that an antagonist of TGFβ can reduce metastasis in a GEM model without serious side-effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, D. & Dubois, R. N. Cyclooxygenase-2: a potential target in breast cancer. Semin. Oncol. 31, 64–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Kavanaugh, C. & Green, J. E. Celecoxib delays tumor incidence and multiplicity in the C3(1)/SV40 Large T–antigen transgenic mammary cancer model. Proc. Am. Assoc. Cancer Res. 44, R4885 (abs) (2003).

    Google Scholar 

  96. Lanza-Jacoby, S. et al. The cyclooxygenase-2 inhibitor, celecoxib, prevents the development of mammary tumors in Her-2/neu mice. Cancer Epidemiol. Biomarkers Prev. 12, 1486–1491 (2003).

    CAS  PubMed  Google Scholar 

  97. Yokoyama, Y., Green, J. E., Sukhatme, V. P. & Ramakrishnan, S. Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinoma in a transgenic mouse model. Cancer Res. 60, 4362–4365 (2000).

    CAS  PubMed  Google Scholar 

  98. Wigginton, J. M. et al. Complete regression of established spontaneous mammary carcinoma and the therapeutic prevention of genetically programmed neoplastic transition by IL-12/pulse IL-2: induction of local T cell infiltration, fas/fas ligand gene expression, and mammary epithelial apoptosis. J. Immunol. 166, 1156–1168 (2001). Demonstration that cytokine therapy can inhibit mammary-tumour formation and cause tumour regression in a GEM model through immune and potentially non-immune mediated mechanisms. A clinical trial was subsequently initiated.

    Article  CAS  PubMed  Google Scholar 

  99. Calvo, A., Feldman, A. L., Libutti, S. K. & Green, J. E. Adenovirus-mediated endostatin delivery results in inhibition of mammary gland tumor growth in C3(1)/SV40 T-antigen transgenic mice. Cancer Res. 62, 3934–3938 (2002).

    CAS  PubMed  Google Scholar 

  100. Huh, J. -I. et al. Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through anti-angiogenic and non-antiangiogenic mechanisms. Oncogene 24, 790–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Li, M. et al. Chemoprevention of mammary carcinogenesis in a transgenic mouse model by α-difluoromethylornithine (DFMO) in the diet is associated with decreased cyclin D1 activity. Oncogene 22, 2568–2572 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Perkins, S. N. et al. Effects of dietary restriction on spontaneous mammabery tumorigenesis in p53-deficient Wnt-1 transgenic mice. Proc. Am. Assoc. Cancer Res. 41, A531 (abs.) (2000).

    Google Scholar 

  103. Cleary, M. P. et al. Weight-cycling decreases incidence and increases latency of mammary tumors to a greater extent than does chronic caloric restriction in mouse mammary tumor virus-transforming growth factor-α female mice. Cancer Epidemiol. Biomarkers Prev. 11, 836–843 (2002).

    CAS  PubMed  Google Scholar 

  104. Jin, Z. & MacDonald, R. S. Soy isoflavones increase latency of spontaneous mammary tumors in mice. J. Nutr. 132, 3186–3190 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Hursting, S. D., Perkins, S. N., Donehower, L. A. & Davis, B. J. Cancer prevention studies in p53-deficient mice. Toxicol. Pathol. 29, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Rao, G. N., Ney, E. & Herbert, R. A. Effect of melatonin and linolenic acid on mammary cancer in transgenic mice with c-neu breast cancer oncogene. Breast Cancer Res. Treat. 64, 287–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Rao, G. N., Ney, E. & Herbert, R. A. Influence of diet on mammary cancer in transgenic mice bearing an oncogene expressed in mammary tissue. Breast Cancer Res. Treat. 45, 149–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Albright, C. D., Salganik, R. I. & Van Dyke, T. Dietary depletion of vitamin E and vitamin A inhibits mammary tumor growth and metastasis in transgenic mice. J. Nutr. 134, 1139–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Kwak, I., Tsai, S. Y. & DeMayo, F. J. Genetically engineered mouse models for lung cancer. Annu. Rev. Physiol. 66, 647–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Wong, A. K. & Chin, L. An inducible melanoma model implicates a role for RAS in tumor maintenance and angiogenesis. Cancer Metastasis Rev. 19, 121–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Young, M. R., Yang, H. S. & Colburn, N. H. Promising molecular targets for cancer prevention: AP-1, NF-κB and Pdcd4. Trends. Mol. Med. 9, 36–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Bok, R. A. et al. Patterns of protease production during prostate cancer progression: proteomic evidence for cascades in a transgenic model. Prostate Cancer Prostatic Dis. 6, 272–280 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    Article  CAS  PubMed  Google Scholar 

  117. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    Article  CAS  PubMed  Google Scholar 

  118. Doetschman, T., Maeda, N. & Smithies, O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 85, 8583–8587 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  120. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001). An important technology to rapidly introduce mutations into large bacterial artificial chromosome segments of DNA, which can subsequently be used to generate GEM models. This will be useful for generating new models to study molecular targets for prevention.

    Article  CAS  PubMed  Google Scholar 

  121. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Holland, E. C. & Varmus, H. E. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc. Natl Acad. Sci. USA 95, 1218–1223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Symolon, H., Schmelz, E. M., Dillehay, D. L. & Merrill, A. H. Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J. Nutr. 134, 1157–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Rao, C. V. et al. Chemoprevention of familial adenomatous polyposis development in the APCmin mouse model by 1,4-phenylene bis(methylene)selenocyanate. Carcinogenesis 21, 617–621 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Davis, C. D., Zeng, H. & Finley, J. W. Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice. J. Nutr. 132, 307–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Jacoby, R. F. et al. Chemoprevention of spontaneous intestinal adenomas in the Apc Min mouse model by the nonsteroidal anti-inflammatory drug piroxicam. Cancer Res. 56, 710–714 (1996).

    CAS  PubMed  Google Scholar 

  127. Barnes, C. J. & Lee, M. Chemoprevention of spontaneous intestinal adenomas in the adenomatous polyposis coli Min mouse model with aspirin. Gastroenterology 114, 873–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Williams, J. L. et al. NO-donating aspirin inhibits intestinal carcinogenesis in Min (APCMin/+) mice. Biochem. Biophys. Res. Commun. 313, 784–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Maroulakou, I. G., Anver, M., Garrett, L. & Green, J. E. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl Acad. Sci. USA 91, 11236–11240 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, K. et al. 9-cis-retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40 T antigen-transgenic mice. Clin. Cancer Res. 6, 3696–3704 (2000).

    CAS  PubMed  Google Scholar 

  131. Shibata, M. A. et al. Comparative effects of lovastatin on mammary and prostate oncogenesis in transgenic mouse models. Carcinogenesis 24, 453–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Calvo, A. et al. Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int. J. Cancer 101, 224–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, X. et al. Hormonal and dietary modulation of mammary carcinogenesis in mouse mammary tumor virus-c-erbB-2 transgenic mice. Cancer Res. 63, 2425–2433 (2003).

    CAS  PubMed  Google Scholar 

  134. Folkman, J. and Kalluri, R. Cancer without disease. Nature 427, 787 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the constructive comments from Nancy Colburn, Glenn Merlino and Ronald Lubet. We apologize to those whose papers have contributed enormously to the field, but due to space limitations, could not be cited.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

NATIONAL CANCER INSTITUTE

breast cancer

colon cancer

prostate cancer

FURTHER INFORMATION

Colon Cancer Chemoprevention Database (Institut National de la Recherche Agronomique)

Jackson Laboratories

National Cancer Institute caArray Data Portal

National Cancer Institute Division of Cancer Prevention

National Cancer Institute Mouse Models of Human Cancer Consortium

Glossary

CHEMOPREVENTION

The use of natural or synthetic compounds to prevent cancer development or progression.

NSAIDS

Non-steroidal anti-inflammatory drugs reduce the inflammatory response by interfering with the production of the prostaglandins that mediate inflammation.

TUMOUR XENOGRAFT

Human tumour cells grown in immuno-compromised mice.

COMPARATIVE GENOMIC HYBRIDIZATION

A molecular cytogenetic method for identifying the gain or loss of large segments of chromosomal material relative to a normal (reference) genome.

RECOMBINEERING

Technology using phage-based Escherichia coli recombination systems, which allows the rapid introduction of targeted mutations into bacterial artificial chromosome (BAC) clones through homologous recombination. The altered BACs can subsequently be used to generate transgenic mice through microinjection or homologous recombination.

BACTERIAL ARTIFICIAL CHROMOSOME

A bacterial vector that can contain up to 200 kb of genomic DNA.

HOMOLOGOUS RECOMBINATION

Exchange of homologous genetic material between different strands of DNA; this is used to introduce altered genomic pieces of DNA into the germ line of mice.

MISMATCH REPAIR GENES

A set of genes that encode proteins that identify discrepancies between complimentary strands of DNA and correct the error.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J., Hudson, T. The promise of genetically engineered mice for cancer prevention studies. Nat Rev Cancer 5, 184–198 (2005). https://doi.org/10.1038/nrc1565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing