Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hallmarks of 'BRCAness' in sporadic cancers

Abstract

Germline mutations in the BRCA1, BRCA2 and Fanconi anaemia genes confer cancer susceptibility, and the proteins encoded by these genes have distinct functions in related DNA-repair processes. Emerging evidence indicates that these processes are disrupted by numerous mechanisms in sporadic cancers. Collectively, there are properties that define 'BRCAness' — that is, traits that some sporadic cancers share with those occurring in either BRCA1- or BRCA2-mutation carriers. These common properties might have important implications for the clinical management of these cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BRCA/Fanconi anaemia DNA-repair pathways.
Figure 2: Hallmarks of BRCAness.
Figure 3: Exploiting the DNA-repair defect of BRCAness phenotypes.

Similar content being viewed by others

References

  1. Wooster, R. & Weber, B. L. Breast and ovarian cancer. N. Engl. J. Med. 348, 2339–2347 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Tutt, A. & Ashworth, A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol. Med. 8, 571–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Venkitaraman, A. R. Tracing the network connecting BRCA and fanconi anaemia proteins. Nature Rev. Cancer 4, 266–276 (2004).

    Article  CAS  Google Scholar 

  5. D'andrea, A. D. & Grompe, M. The fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  6. Merajver, S. D. et al. Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nature Genet. 9, 439–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Futreal, P. A. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Lancaster, J. M. et al. BRCA2 mutations in primary breast and ovarian cancers. Nature Genet. 13, 238–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Van 'T Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smalley, M. & Ashworth, A. Stem cells and breast cancer: a field in transit. Nature Rev. Cancer 3, 832–844 (2003).

    Article  CAS  Google Scholar 

  14. Foulkes, W. D. et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst. 95, 1482–1485 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Jazaeri, A. A. et al. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J. Natl Cancer Inst. 94, 990–1000 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Lakhani, S. R. et al. Profiling familial breast cancer. Nature Med. 7, 408–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Crook, T. et al. p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene 17, 1681–1689 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N. & Foulkes, W. P. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: Distinctive spectrum and structural distribution. Cancer Res. 61, 4092–4097 (2001).

    CAS  PubMed  Google Scholar 

  20. Bischoff, J. R. & Plowman, G. D. The aurora/ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454–459 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Lakhani, S. et al. Basal markers and estogen receptor status are powerful predictors of germline BRCA1 mutations. Proc. Am. Assoc. Cancer Res. abstract 5593 (2004).

  23. Tirkkonen, M. et al. Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 57, 1222–1227 (1997).

    CAS  PubMed  Google Scholar 

  24. Wessels, L. F. et al. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for brca1 tumors. Cancer Res. 62, 7110–7117 (2002).

    CAS  PubMed  Google Scholar 

  25. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Esteller, M. et al. Promoter hypermethylation and brca1 inactivation in sporadic breast and ovarian tumors. J. Natl Cancer Inst. 92, 564–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Rice, J. C. et al. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 21, 1761–1765 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Catteau, A. et al. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 18, 1957–1965 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Geisler, J. P. et al. Frequency of BRCA1 dysfunction in ovarian cancer. J. Natl Cancer Inst. 94, 61–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Baldwin, R. L. et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 60, 5329–5333 (2000).

    CAS  PubMed  Google Scholar 

  31. Chan, K. Y. et al. Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res. 62, 4151–4156 (2002).

    CAS  PubMed  Google Scholar 

  32. Staff, S. et al. Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res. 63, 4978–4983 (2003).

    CAS  PubMed  Google Scholar 

  33. Bianco, T. et al. Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. Carcinogenesis 21, 147–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Marsit, C. J. et al. Inactivation of the fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23, 1000–1004 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Narayan, G. et al. Promoter hypermethylation of FANCF: disruption of fanconi anemia-BRCA pathway in cervical cancer. Cancer Res. 64, 2994–2997 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  37. Baylin, S. & Bestor, T. H. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1, 299–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Grushko, T. A. et al. Myc is amplified in BRCA1-associated breast cancers. Clin. Cancer Res. 10, 499–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Magdinier, F. et al. Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene 17, 3169–3176 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, B. J. et al. Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am. J. Hum. Genet. 73, 748–767 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beckmann, M. W. et al. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br. J. Cancer 73, 1220–1226 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santarosa, M. & Ashworth, A. Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim. Biophys. Acta 1654, 105–122 (2004).

    CAS  PubMed  Google Scholar 

  43. Baldeyron, C. et al. A single mutated BRCA1 allele leads to impaired fidelity of double strand break end-joining. Oncogene 21, 1401–1410 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Taniguchi, T. et al. Disruption of the fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Med. 9, 568–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Wei, M. et al. FANCF promoter is methylated in human sporadic breast cancers. Proc. Am. Soc. Hum. Genet. abstract 471 (2003).

  46. Van Der Heijden, M. S. et al. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res. 63, 2585–2588 (2003).

    CAS  PubMed  Google Scholar 

  47. Collins, N. et al. Absence of methylation of CpG dinucleotides within the promoter of the breast cancer susceptibility gene BRCA2 in normal tissues and in breast and ovarian cancers. Br. J. Cancer 76, 1150–1156 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hilton, J. L. et al. Inactivation of BRCA1 and BRCA2 in ovarian cancer. J. Natl Cancer Inst. 94, 1396–1406 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Hughes-Davies, L. et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115, 523–535 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Stoppa-Lyonnet, D. et al. Familial invasive breast cancers: worse outcome related to brca1 mutations. J. Clin. Oncol. 18, 4053–4059 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Verhoog, L. C. et al. Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351, 316–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Robson, M. E. et al. A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res. 6, R8–R17 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Foulkes, W. D. et al. Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer 98, 1569–1577 (2003).

    Article  PubMed  Google Scholar 

  54. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Kraakman-Van Der Zwet, M. et al. BRCA2 (xrcc11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol. 22, 669–679 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhattacharyya, A. et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of RAD51 and survival following treatment with the DNA cross-linking agent cisplatin. J. Biol. Chem. 275, 23899–23903 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Moynahan, M. E. et al. Homology-directed dna repair, mitomycin-C resistance, and chromosome stability is restored with correction of a BRCA1 mutation. Cancer Res. 61, 4842–4850 (2001).

    CAS  PubMed  Google Scholar 

  58. Tassone, P. et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective hcc1937 human breast cancer cells. Br. J. Cancer 88, 1285–1291 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quinn, J. E. et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 63, 6221–6228 (2003).

    CAS  PubMed  Google Scholar 

  60. Fedier, A. et al. The effect of loss of BRCA1 on the sensitivity to anticancer agents in p53-deficient cells. Int. J. Oncol. 22, 1169–1173 (2003).

    CAS  PubMed  Google Scholar 

  61. Couzin, J. Choices—and uncertainties — for women with BRCA mutations. Science 302, 592 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in fanconi anemia. Nature Genet. 35, 165–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Higuera, I. et al. Interaction of the fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Hussain, S. et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum. Mol. Genet. 13, 1241–1248 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Rothfuss, A. & Grompe, M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the fanconi anemia/BRCA pathway. Mol. Cell. Biol. 24, 123–134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mchugh, P. J. et al. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2, 483–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Breast Cancer and Linkage Consortium. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet 349, 1505–1510 (1997).

  68. Lakhani, S. R. et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J. Clin. Oncol. 20, 2310–2318 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Palacios, J. et al. Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin. Cancer Res. 9, 3606–3614 (2003).

    CAS  PubMed  Google Scholar 

  70. Lakhani, S. R. et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J. Natl Cancer Inst. 90, 1138–1145 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Foster, K. A. et al. Somatic and germline mutations of the BRCA2 gene in sporadic ovarian cancer. Cancer Res. 56, 3622–3625 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Ashworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

ovarian cancer

Entrez Gene

AURORA2

BRCA1

BRCA2

CK14

CK17

CK5/6

c-MYC

EGFR

EMSY

ERBB2

FANCC

FANCD2

FANCF

RAD51

TP53

OMIM

Fanconi anaemia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer 4, 814–819 (2004). https://doi.org/10.1038/nrc1457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing