Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cannabinoids: potential anticancer agents

Key Points

  • Cannabinoids, the active components of Cannabis sativa and their derivatives, act in the organism by mimicking endogenous substances, the endocannabinoids, that activate specific cannabinoid receptors.

  • Cannabinoids exert palliative effects in patients with cancer and inhibit tumour growth in laboratory animals.

  • The best-established palliative effect of cannabinoids in cancer patients is the inhibition of chemotherapy-induced nausea and vomiting. Today, capsules of Δ9-tetrahydrocannabinol (dronabinol (Marinol)) and its synthetic analogue nabilone (Cesamet) are approved for this purpose.

  • Other potential palliative effects of cannabinoids in cancer patients — supported by Phase III clinical trials — include appetite stimulation and pain inhibition. In relation to the former, dronabinol is now prescribed for anorexia associated with weight loss in patients with AIDS.

  • Cannabinoids inhibit tumour growth in laboratory animals. They do so by modulating key cell-signalling pathways, thereby inducing direct growth arrest and death of tumour cells, as well as by inhibiting tumour angiogenesis and metastasis.

  • Cannabinoids are selective antitumour compounds, as they can kill tumour cells without affecting their non-transformed counterparts. It is probable that cannabinoid receptors regulate cell-survival and cell-death pathways differently in tumour and non-tumour cells.

  • Cannabinoids have favourable drug-safety profiles and do not produce the generalized toxic effects of conventional chemotherapies. The use of cannabinoids in medicine, however, is limited by their psychoactive effects, and so cannabinoid-based therapies that are devoid of unwanted side effects are being designed.

  • Further basic and preclinical research on cannabinoid anticancer properties is required. It would be desirable that clinical trials could accompany these laboratory studies to allow us to use these compounds in the treatment of cancer.

Abstract

Cannabinoids — the active components of Cannabis sativa and their derivatives — exert palliative effects in cancer patients by preventing nausea, vomiting and pain and by stimulating appetite. In addition, these compounds have been shown to inhibit the growth of tumour cells in culture and animal models by modulating key cell-signalling pathways. Cannabinoids are usually well tolerated, and do not produce the generalized toxic effects of conventional chemotherapies. So, could cannabinoids be used to develop new anticancer therapies?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways involved in the control of cell fate by cannabinoids.
Figure 2: Differential cannabinoid signalling in transformed versus non-transformed glial cells.

Similar content being viewed by others

References

  1. Gaoni, Y. & Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647 (1964).

    Article  CAS  Google Scholar 

  2. Howlett, A. C. et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202 (2002). A comprehensive update on cannabinoid receptors and their biochemistry and pharmacology.

    Article  CAS  PubMed  Google Scholar 

  3. Herkenham, M. et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Porter, A. C. & Felder, C. C. The endocannabinoid nervous system. Unique opportunities for therapeutic intervention. Pharmacol. Ther. 90, 45–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Pertwee, R. G. Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin. Investig. Drugs 9, 1553–1571 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Di Carlo, G. & Izzo, A. A. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin. Investig. Drugs 12, 39–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Croxford, J. L. Therapeutic potential of cannabinoids in CNS disease. CNS Drugs 17, 179–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Robson, P. Therapeutic aspects of cannabis and cannabinoids. Br. J. Psychiatry 178, 107–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Tramer, M. R. et al. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ 323, 16–21 (2001). A detailed review on the best palliative action of cannabinoids in cancer therapy that has been established so far.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walsh, D., Nelson, K. A. & Mahmoud, F. A. Established and potential therapeutic applications of cannabinoids in oncology. Support Care Cancer 11, 137–143 (2003).

    Article  PubMed  Google Scholar 

  11. Barann, M. et al. Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br. J. Pharmacol. 137, 589–596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tisdale, M. J. Cachexia in cancer patients. Nature Rev. Cancer 2, 862–871 (2002).

    Article  CAS  Google Scholar 

  13. Berry, E. M. & Mechoulam, R. Tetrahydrocannabinol and endocannabinoids in feeding and appetite. Pharmacol. Ther. 95, 185–190 (2002). An authoritative review on the physiological role and therapeutic potential of cannabinoids in appetite stimulation.

    Article  CAS  PubMed  Google Scholar 

  14. Cota, D. et al. Endogenous cannabinoid system as a modulator of food intake. Int. J. Obes. Relat. Metab. Disord. 27, 289–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gomez, R. et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J. Neurosci. 22, 9612–9617 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Bensaid, M. et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol. 63, 908–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson, K., Walsh, D., Deeter, P. & Sheehan, F. A phase II study of δ-9-tetrahydrocannabinol for appetite stimulation in cancer-associated anorexia. J. Palliat. Care 10, 14–18 (1994).

    CAS  PubMed  Google Scholar 

  19. Jatoi, A. et al. Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group study. J. Clin. Oncol. 20, 567–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Mantyh, P. W., Clohisy, D. R., Koltzenburg, M. & Hunt, S. P. Molecular mechanisms of cancer pain. Nature Rev. Cancer 2, 201–209 (2002).

    Article  CAS  Google Scholar 

  21. Pertwee, R. G. Cannabinoid receptors and pain. Prog. Neurobiol. 63, 569–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Walker, J. & Huang, S. Cannabinoid analgesia. Pharmacol. Ther. 95, 127–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Calignano, A., LaRana, G., Giuffrida, A. & Piomelli, D. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, F. A. et al. Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. BMJ 323, 13–16 (2001). A lively discussion on the possible therapeutic value of cannabinoids as analgesic agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noyes, R. Jr, Brunk, S. F., Avery, D. A. H. & Canter, A. C. The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin. Pharmacol. Ther. 18, 84–89 (1975).

    Article  PubMed  Google Scholar 

  26. Iversen, L. & Chapman, V. Cannabinoids: a real prospect for pain relief. Curr. Opin. Pharmacol. 2, 50–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Manzanares, J. et al. Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol. Sci. 20, 287–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Baker, D. & Pryce, G. The therapeutic potential of cannabis in multiple sclerosis. Expert Opin. Investig. Drugs 12, 561–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Munson, A. E., Harris, L. S., Friedman, M. A., Dewey, W. L. & Carchman, R. A. Antineoplastic activity of cannabinoids. J. Natl Cancer Inst. 55, 597–602 (1975). The seminal demonstration that THC inhibits tumour-cell growth in culture and in mice.

    Article  CAS  PubMed  Google Scholar 

  30. Guzman, M., Sanchez, C. & Galve-Roperh, I. Cannabinoids and cell fate. Pharmacol. Ther. 95, 175–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Bouaboula, M. et al. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem. J. 312, 637–641 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bouaboula, M. et al. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur. J. Biochem. 237, 704–711 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J. et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem. J. 346, 835–840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rueda, D., Galve-Roperh, I., Haro, A. & Guzman, M. The CB1 cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol. Pharmacol. 58, 814–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Derkinderen, P., Ledent, C., Parmentier, M. & Girault, J. A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J. Neurochem. 77, 957–960 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rueda, D., Navarro, B., Martinez-Serrano, A., Guzman, M. & Galve-Roperh, I. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J. Biol. Chem. 277, 46645–46650 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Gomez del Pulgar, T., Velasco, G. & Guzman, M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem. J. 347, 369–373 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez, M. G., Ruiz-Llorente, L., Sanchez, A. M. & Diaz-Laviada, I. Activation of phosphoinositide 3-kinase/PKB pathway by CB1 and CB2 cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell. Signal. 15, 851–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  41. Samson, M. T. et al. Differential roles of CB1 and CB2 cannabinoid receptors in mast cells. J. Immunol. 170, 4953–4962 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Gomez del Pulgar, T., Velasco, G., Sanchez, C., Haro, A. & Guzman, M. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem. J. 363, 183–188 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bouaboula, M. et al. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J. Biol. Chem. 272, 22330–22339 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Galve-Roperh, I., Rueda, D., Gomez Del Pulgar, T., Velasco, G. & Guzman, M. Mechanism of extracellular signal-regulated kinase activation by the CB1 cannabinoid receptor. Mol. Pharmacol. 62, 1385–1392 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Derkinderen, P. et al. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci. 23, 2371–2382 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez, C., Galve-Roperh, I., Rueda, D. & Guzman, M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Δ9–tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol. Pharmacol. 54, 834–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Hannun, Y. A. & Obeid, L. M. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277, 25847–25850 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Kolesnick, R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3–8 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanchez, C. et al. The CB1 cannabinoid receptor of astrocytes is coupled to sphingomyelin hydrolysis through the adaptor protein fan. Mol. Pharmacol. 59, 955–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Med. 6, 313–319 (2000). The first identification of a signalling mechanism for the apoptotic action of cannabinoids on tumour cells.

    Article  CAS  PubMed  Google Scholar 

  51. Sanchez, C., Galve-Roperh, I., Canova, C., Brachet, P. & Guzman, M. Δ9–Tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett. 436, 6–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Guzman, M., Galve-Roperh, I. & Sanchez, C. Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol. Sci. 22, 19–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res. 61, 5784–5789 (2001).

    CAS  PubMed  Google Scholar 

  54. Mimeault, M., Pommery, N., Wattez, N., Bailly, C. & Henichart, J. P. Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. Prostate 56, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Sarker, K. P., Obara, S., Nakata, M., Kitajima, I. & Maruyama, I. Anandamide induces apoptosis of PC-12 cells: involvement of superoxide and caspase-3. FEBS Lett. 472, 39–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Sarker, K. P. et al. ASK1-p38 MAPK/JNK signaling cascade mediates anandamide-induced PC12 cell death. J. Neurochem. 85, 50–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. De Petrocellis, L. et al. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc. Natl Acad. Sci. USA 95, 8375–8380 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Melck, D. et al. Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 463, 235–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Melck, D. et al. Suppression of nerve growth factor trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141, 118–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Bifulco, M. et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. FASEB J. 15, 2745–2747 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Casanova, M. L. et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J. Clin. Invest. 111, 43–50 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002).

    Article  CAS  Google Scholar 

  63. Blazquez, C. et al. Inhibition of tumor angiogenesis by cannabinoids. FASEB J. 17, 529–531 (2003). The first paper showing that cannabinoid administration to mice impairs tumour angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  64. Portella, G. et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 3 Jul 2003 (doi:10.1096/fj.02-1129fje).

  65. Gomez Del Pulgar, T., De Ceballos, M. L., Guzman, M. & Velasco, G. Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 277, 36527–36533 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Molina-Holgado, E. et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J. Neurosci. 22, 9742–9753 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Blazquez, C., Galve-Roperh, I. & Guzman, M. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J. 14, 2315–2322 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Glass, M. & Felder, C. C. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J. Neurosci. 17, 5327–5333 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Vasquez, C. & Lewis, D. L. The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J. Neurosci. 19, 9271–9280 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Mukhopadhyay, S., McIntosh, H. H., Houston, D. B. & Howlett, A. C. The CB1 cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol. Pharmacol. 57, 162–170 (2000).

    CAS  PubMed  Google Scholar 

  71. Mechoulam, R., Panikashvili, D. & Shohami, E. Cannabinoids and brain injury: therapeutic implications. Trends Mol. Med. 8, 58–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. van der Stelt, M. et al. Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol. Neurobiol. 26, 317–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Maccarrone, M., Lorenzon, T., Bari, M., Melino, G. & Finazzi-Agro, A. Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J. Biol. Chem. 275, 31938–31945 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Guzman, M., Sanchez, C. & Galve-Roperh, I. Control of the cell survival/death decision by cannabinoids. J. Mol. Med. 78, 613–625 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Schwarz, H., Blanco, F. J. & Lotz, M. Anadamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J. Neuroimmunol. 55, 107–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, W., Friedman, H. & Klein, T. W. Δ9-tetrahydrocannabinol induces apoptosis in macrophages and lymphocytes: involvement of Bcl-2 and caspase-1. J. Pharmacol. Exp. Ther. 286, 1103–1109 (1998).

    CAS  PubMed  Google Scholar 

  77. Zhu, L. X. et al. Δ-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J. Immunol. 165, 373–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Derocq, J. M., Segui, M., Marchand, J., Le Fur, G. & Casellas, P. Cannabinoids enhance human B-cell growth at low nanomolar concentrations. FEBS Lett. 369, 177–182 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Valk, P. et al. Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. Blood 90, 1448–1457 (1997).

    CAS  PubMed  Google Scholar 

  80. Tashkin, D. R., Baldwin, G. C., Sarafian, T., Dubinett, S. & Roth, M. D. Respiratory and immunologic consequences of marijuana smoking. J. Clin. Pharmacol. 42, 71S–81S (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Adams, I. B. & Martin, B. R. Cannabis: pharmacology and toxicology in animals and humans. Addiction 91, 1585–1614 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Grotenhermen, F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 42, 327–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Chan, P. C., Sills, R. C., Braun, A. G., Haseman, J. K. & Bucher, J. R. Toxicity and carcinogenicity of Δ9–tetrahydrocannabinol in Fischer rats and B6C3F1 mice. Fund. Appl. Toxicol. 30, 109–117 (1996).

    Article  CAS  Google Scholar 

  84. Malan, T. P. et al. CB2 cannabinoid receptor agonists: pain relief without psychoactive effects? Curr. Opin. Pharmacol. 3, 62–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Jacobsson, S. O., Rongard, E., Stridh, M., Tiger, G. & Fowler, C. J. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability. Biochem. Pharmacol. 60, 1807–1813 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Mechoulam, R., Parker, L. A. & Gallily, R. Cannabidiol: an overview of some pharmacological aspects. J. Clin. Pharmacol. 42, 11S–19S (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Pop, E. Dexanabinol Pharmos. Curr. Opin. Investig. Drugs 1, 494–503 (2000).

    CAS  PubMed  Google Scholar 

  88. Recht, L. D. et al. Antitumor effects of ajulemic acid (CT3), a synthetic non-psychoactive cannabinoid. Biochem. Pharmacol. 62, 755–763 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Rhee, M. H. et al. Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J. Med. Chem. 40, 3228–3233 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Bifulco, M. & Di Marzo, V. Targeting the endocannabinoid system in cancer therapy: a call for further research. Nature Med. 8, 547–550 (2002). An enjoyable commentary about the possible antitumour action of the endogenous cannabinoid system.

    Article  CAS  PubMed  Google Scholar 

  91. Gallily, R. et al. γ-Irradiation enhances apoptosis induced by cannabidiol, a non-psychotropic cannabinoid, in cultured HL–60 myeloblastic leukemia cells. Leukemia Lymphoma 44, 1767–1773 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Radin, N. S. Killing tumours by ceramide-induced apoptosis: a critique of available drugs. Biochem. J. 371, 243–256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maurer, B. J., Melton, L., Billups, C., Cabot, M. C. & Reynolds, C. P. Synergistic cytotoxicity in solid tumor cell lines between N-(4- hydroxyphenyl)retinamide and modulators of ceramide metabolism. J. Natl Cancer Inst. 92, 1897–1909 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Maher, E. A. et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Louis, D. N., Pomeroy, S. L. & Cairncross, J. G. Focus on central nervous system neoplasia. Cancer Cell 1, 125–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. McKallip, R. J. et al. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood 100, 627–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Mon, M. J., Jansing, R. L., Doggett, S., Stein, J. L. & Stein, G. S. Influence of Δ9–tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 27, 1759–1765 (1978).

    Article  CAS  PubMed  Google Scholar 

  98. Blevins, R. D. & Smith, D. P. Effects of Δ-9-tetrahydrocannabinol on cultured HeLa cell growth and development. Growth 44, 133–138 (1980).

    CAS  PubMed  Google Scholar 

  99. Ruiz, L., Miguel, A. & Diaz-Laviada, I. Δ9–tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. FEBS Lett. 458, 400–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Devane, W. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992). The discovery of anandamide, the first endogenous ligand of cannabinoid receptors.

    Article  CAS  PubMed  Google Scholar 

  101. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990). The molecular characterization of CB 1 — the first specific cannabinoid receptor.

    Article  CAS  PubMed  Google Scholar 

  104. Munro, S., Thomas, K. L. & Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide. Nature 372, 686–691 (1994). The discovery of the currently accepted molecular mechanism of endocannabinoid biosynthesis.

    Article  CAS  PubMed  Google Scholar 

  106. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Beltramo, M. et al. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277, 1094–1097 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Piomelli, D., Giuffrida, A., Calignano, A. & Rodríguez de Fonseca, F. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci. 21, 218–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Schlicker, E. & Kathmann, M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci. 22, 565–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Maldonado, R. & Rodriguez de Fonseca, F. Cannabinoid addiction: behavioral models and neural correlates. J. Neurosci. 22, 3326–3331 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Calhoun, S. R., Galloway, G. P. & Smith, D. E. Abuse potential of dronabinol (Marinol). J. Psychoactive Drugs 30, 187–196 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to all my laboratory colleagues, in particular to I. Galve-Roperh, G. Velasco and C. Sanchez for their continuous support and for making our research projects possible. This work was funded by 'Fundación Científica de la Asociación Española Contra el Cáncer' and 'Ministerio de Ciencia y Tecnología'.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

Glioblastoma multiforme

breast cancer

leukaemia

lymphomas

lung cancer

prostate cancer

skin cancer

thyroid cancer

LocusLink

adenylyl cyclase

AKT

CB1

CB2

EGF

ERK

FAAH

FAN

interferon-γ

interleukin-12

JNK

KRAS

matrix metalloproteinase-2

NF-κB

NGF

NOS

p38 MAPK

PI3K

RAF1

VEGF

FURTHER INFORMATION

British Medical Association (Therapeutic uses of cannabis)

GW Pharmaceuticals clinical trials

House of Lords Committee on Science and Technology (therapeutic uses of cannabis)

House of Lords Committee on Science and Technology (therapeutic uses of cannabis)

House of Lords Committee on Science and Technology (therapeutic uses of cannabis)

International Cannabinoid Research Society

IUPHAR Receptor Database

MRC multiple sclerosis clinical trial

Pharmos (dexanabinol)

RxMed (nabilone)

Sanofi–Synthelabo (rimonabant)

Unimed (dronabinol)

Glossary

CANNABINOIDS

Compounds with tetrahydrocannabinol (THC)-like structures and/or THC-like pharmacological properties. Many compounds with a THC-like structure are present in cannabis, but not all of them have THC-like pharmacological properties. In addition, some natural or synthetic compounds have THC-like pharmacological properties but not THC-like structure.

CANNABIMIMETIC

Tetrahydrocannabinol (THC)-like in pharmacological terms. A compound is usually accepted as cannabimimetic if it produces four characteristic THC effects in an in vivo assay known as the 'mouse tetrad model': hypomotility, hypothermia, analgesia and a sustained immobility of posture (catalepsy).

CANNABIDIOL

A non-psychoactive cannabinoid present in cannabis that inhibits convulsions, anxiety, vomiting and inflammation; it is now in Phase III clinical trials in combination with tetrahydrocannabinol for the treatment of multiple-sclerosis-associated muscle disorders.

MYENTERIC AND SUBMUCOSAL PLEXUS

A network of sympathetic and parasympathetic nerve fibres and neuron cell bodies that are tucked in among the interstices of the smooth-muscle layer surrounding the digestive mucosa (myenteric plexus) or just underneath the digestive mucosa (submucosal plexus) and that coordinately control gastrointestinal contractions.

META-ANALYSIS

Statistical analysis of a large collection of results from individual studies for the purpose of integrating their findings.

IONOTROPIC RECEPTORS

Channel-like receptors that are opened by agonist binding and through which ions such as Na+, K+ and/or Ca2+ can pass. Ionotropic glutamate receptors are usually divided into three groups: N-methyl-D-aspartic acid (NMDA) receptors, kainate receptors and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors.

METABOTROPIC RECEPTORS

Seven-transmembrane (heptahelical) receptors that couple to heterotrimeric G proteins, thereby modulating pathways such as cyclic AMP–protein kinase A (via Gs or Gi), diacylglycerol–protein kinase C (via Gq) and inositol 1,4,5-trisphosphate–Ca2+ (via Gq). At least eight subtypes of glutamate metabotropic receptors are known.

INTRAOCULAR PRESSURE

Pressure inside the eye. When it increases — for example, in glaucoma — damage to the optic nerve of the eye can result in blindness. Cannabinoids decrease intraocular pressure.

NOCICEPTIVE

A stimulus that causes pain or a reaction that is caused by pain.

HYPERALGESIA

An increased sensitivity and lowered threshold to a stimulus — such as burn of the skin — that is normally painful.

ALLODYNIA

Pain caused by a stimulus — such as touch, pressure and warmth — that does not normally provoke pain.

SENSORY-MOTOR PERIPHERAL NEUROPATHIES

Diseases or abnormalities of the peripheral nervous system that affect senses and movement.

MYASTHENIC

Abnormal muscle weakness or fatigue.

FORKHEAD TRANSCRIPTION FACTORS

A family of proteins that regulate the expression of genes that are involved in the control of cell survival, death, growth, differentiation and stress responses. Their activity is tightly controlled by AKT, so that phosphorylated forkhead transcription factor FOXO is retained in the cytoplasm and remains transcriptionally inactive.

PHEOCHROMOCYTOMA

A relatively severe tumour of adrenal-gland chromaffin cells that causes excess release of adrenaline and noradrenaline and is therefore characterized by hypertension and tachycardia.

PHARMACODYNAMICS

Mechanisms by which drugs affect their target sites in the body to produce their desired therapeutic effects and their adverse side effects.

PHARMACOKINETICS

Time course of drug and metabolite levels in different fluids, tissues and excreta of the body, and of the mathematical relationships required to develop models to interpret such data.

FIRST-PASS METABOLISM

Pre-systemic metabolism of a drug that limits its exposure to the body. For example, chemical or enzymatic breakdown of a drug in the gastrointestinal lumen or in the stomach, intestine or liver cells can greatly reduce the amount of drug that ends up in the bloodstream.

DEXANABINOL

(HU-211). A non-psychoactive synthetic derivative of tetrahydrocannabinol that blocks ionotropic glutamate receptors and has antioxidant and anti-inflammatory properties; it is now in Phase III clinical trials for the management of brain trauma.

AJULEMIC ACID

(CT3). A synthetic derivative of the tetrahydrocannabinol metabolite 11-carboxy-THC that inhibits pain and inflammation; it is entering Phase II clinical trials for the treatment of pain and spasticity in multiple sclerosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, M. Cannabinoids: potential anticancer agents. Nat Rev Cancer 3, 745–755 (2003). https://doi.org/10.1038/nrc1188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing