Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene therapy to protect haematopoietic cells from cytotoxic cancer drugs

Key Points

  • Chemotherapeutic drugs are most toxic to rapidly proliferating cells in the gastrointestinal tract and the blood-forming haematopoietic system. As a result, the dosage of the chemotherapeutic agents must be reduced, along with the likelihood of tumour eradication.

  • Gene therapy approaches have been developed to promote stable integration of drug-resistance genes in pluripotent haematopoietic stem cells.

  • Protecting a cancer patient's haematopoietic stem cells from the toxic effects of cancer therapies involves autologous transplantation of genetically modified bone-marrow cells. These cells are transduced ex vivo with a retroviral vector that contains a drug-resistance gene before being transplanted back into the patient.

  • The choice of envelope protein expressed by the viral vector has proven to be an important determinant of stem-cell transduction efficiency, due to the fact that the receptors for viral envelopes are expressed at varying levels on the stem-cell surface.

  • Mouse oncoretroviruses can only gain access to nuclear chromatin during mitosis, whereas lentiviral vectors can enter an intact nucleus directly through the nuclear pores.

  • Various drug-resistance genes have been shown to protect haematopoietic stem cells in animal models. These include the multidrug resistance 1 gene (Mdr1), dihydrofolate reductase (Dhfr) and methylguanine methyltransferase (Mgmt).

  • Several clinical trials have evaluated the feasiblity of haematopoietic protection using MDR1-expressing vectors in adult cancer patients.

  • Haematopoietic stem-cell gene therapy offers an opportunity to widen the anticancer therapeutic index.

Abstract

One of the most important complications of cancer chemotherapy is the toxic effect that the drugs have on normal tissues — particularly the bone marrow. Several gene-therapy vectors have been developed with the aim of expressing drug-resistance genes specifically in bone-marrow stem cells, so protecting them from chemotherapeutics. The feasibility of this approach has been established in animal model systems, and recent advances in the design of gene-therapy vectors offer promise for future clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene therapy to protect haematopoietic cells from the toxic effects of chemotherapy.
Figure 2: Biological barriers to retroviral vector insertion into stem cells.
Figure 3: P-glycoprotein as a transmembrane drug efflux pump.
Figure 4: Folate metabolism and drug resistance.
Figure 5: Widening the therapeutic index vectors that express methylguanine methyltransferase and 6-BG.
Figure 6: In vivo stem-cell selection.

Similar content being viewed by others

References

  1. Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002).

    CAS  PubMed  Google Scholar 

  2. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).A review of the molecular mechanisms of drug resistance, with a focus on the ABC transporter superfamily.

    CAS  Google Scholar 

  3. Lee, C. G., Vieira, W. D., Pastan, I. & Gottesman, M. M. An episomally maintained MDR1 gene for gene therapy. Hum. Gene Ther. 12, 945–953 (2001).

    CAS  PubMed  Google Scholar 

  4. Kimchi-Sarfaty, C., Nun-Shaul, O., Rund, D., Oppenheim, A. & Gottesman, M. M. In vitro-packaged SV40 pseudovirions as highly efficient vectors for gene transfer. Hum. Gene Ther. 13, 299–310 (2002).

    CAS  PubMed  Google Scholar 

  5. Baudard, M. et al. Expression of the human multidrug resistance and glucocerebrosidase cDNAs from adeno-associated vectors: efficient promoter activity of AAV sequences and in vivo delivery via liposomes. Hum. Gene Ther. 7, 1309–1322 (1996).

    CAS  PubMed  Google Scholar 

  6. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    CAS  PubMed  Google Scholar 

  7. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79 (1985).The first demonstration that retroviral vectors can be used to stably insert foreign genetic material in long-term reconstituting stem cells. This work formed the basis for using retroviral vectors for haematopoietic gene therapy.

    CAS  PubMed  Google Scholar 

  8. Williams, D. A., Lemischka, I. R., Nathan, D. G. & Mulligan, R. C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480 (1984).

    CAS  PubMed  Google Scholar 

  9. Persons, D. A. et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 90, 1777–1786 (1997).

    CAS  PubMed  Google Scholar 

  10. Persons, D. A. et al. Utilization of the green flourescent protein gene as a marker to identify and track genetically-modified hematopoietic cells. Nature Med. 4, 1201–1205 (1998).

    CAS  PubMed  Google Scholar 

  11. Tisdale, J. F. et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 92, 1131–1141 (1998).Using a modern gene-transfer protocol in non-human primates, this study showed that up to 20% of blood cells could be transduced with a retroviral vector. This provided the first evidence that retroviral vectors could be used to obtain a therapeutically relevant number of transduced cells.

    CAS  PubMed  Google Scholar 

  12. Dunbar, C. E. et al. Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proc. Natl Acad. Sci. USA 93, 11871–11876 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunbar, C. E. et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85, 3048–3057 (1995).

    CAS  PubMed  Google Scholar 

  14. Kiem, H. P. et al. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 90, 4638–4645 (1997).

    CAS  PubMed  Google Scholar 

  15. Kiem, H. P. et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 92, 1878–1886 (1998).

    CAS  PubMed  Google Scholar 

  16. Kim, J. W., Closs, E. I., Albritton, L. M. & Cunningham, J. M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352, 725–728 (1991).

    CAS  PubMed  Google Scholar 

  17. Orlic, D. et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc. Natl Acad. Sci. USA 93, 11097–11102 (1996).This study showed the importance of selecting the appropriate retroviral envelope in designing gene-therapy vectors. The authors showed that haematopoietic stem cells express very low levels of a commonly used envelope receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, D. G., Edwards, R. H. & Miller, A. D. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc. Natl Acad. Sci. USA 91, 78–82 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Orlic, D. et al. Identification of human and mouse hematopoietic stem cell populations expressing high levels of mRNA encoding retrovirus receptors. Blood 91, 3247–3254 (1998).

    CAS  PubMed  Google Scholar 

  20. Kavanaugh, M. P. et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl Acad. Sci. USA 91, 7071–7075 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rasko, J. E., Battini, J. L., Gottschalk, R. J., Mazo, I. & Miller, A. D. The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc. Natl Acad. Sci. USA 96, 2129–2134 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Porter, C. D. et al. Comparison of efficiency of infection of human gene therapy target cells via four different retroviral receptors. Hum. Gene Ther. 7, 913–919 (1996).

    CAS  PubMed  Google Scholar 

  23. Kelly, P. F., Vandergriff, J., Nathwani, A., Nienhuis, A. W. & Vanin, E. F. Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood 96, 1206–1214 (2000).

    CAS  PubMed  Google Scholar 

  24. Emi, N., Friedmann, T. & Yee, J. K. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J. Virol. 65, 1202–1207 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M. & Torbett, B. E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 (1999).This study reported the use of HIV-based lentiviral vectors to transduce human stem cells, and shows efficient transduction in an immunodeficient mouse model of reconstitution.

    Article  CAS  PubMed  Google Scholar 

  26. Barrette, S. et al. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors. Mol. Ther. 1, 330–338 (2000).

    CAS  PubMed  Google Scholar 

  27. Hanawa, H. et al. Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 5, 242–251 (2002).

    CAS  PubMed  Google Scholar 

  28. Agrawal, Y. P. et al. Cell-cycle kinetics and VSV-G pseudotyped retrovirus-mediated gene transfer in blood-derived CD34+ cells. Exp. Hematol. 24, 738–747 (1996).

    CAS  PubMed  Google Scholar 

  29. Moebes, A. et al. Human foamy virus reverse transcription that occurs late in the viral replication cycle. J. Virol. 71, 7305–7311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vassilopoulos, G., Trobridge, G., Josephson, N. C. & Russell, D. W. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 98, 604–609 (2001).

    CAS  PubMed  Google Scholar 

  31. Hirata, R. K., Miller, A. D., Andrews, R. G. & Russell, D. W. Transduction of hematopoietic cells by foamy virus vectors. Blood 88, 3654–3661 (1996).

    CAS  PubMed  Google Scholar 

  32. Miller, D. G., Adam, M. A. & Miller, A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bodine, D. M., Karlsson, S. & Nienhuis, A. W. Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl Acad. Sci. USA 86, 8897–8901 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhatia, M. et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186, 619–624 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dao, M. A., Taylor, N. & Nolta, J. A. Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip1) coupled with transforming growth factor-β neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc. Natl Acad. Sci. USA 95, 13006–13011 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewis, P. F. & Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchida, N. et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl Acad. Sci. USA 95, 11939–11944 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bukrinsky, M. I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669 (1993).

    CAS  PubMed  Google Scholar 

  40. Fletcher, T. M. et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J. 15, 6155–6165 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Walters, M. C. et al. Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 10, 185–195 (1996).

    CAS  PubMed  Google Scholar 

  42. Francastel, C., Walters, M. C., Groudine, M. & Martin, D. I. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Cell 99, 259–269 (1999).

    CAS  PubMed  Google Scholar 

  43. Emery, D. W., Yannaki, E., Tubb, J. & Stamatoyannopoulos, G. A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc. Natl Acad. Sci. USA 97, 9150–9155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walters, M. C. et al. The chicken β-globin 5′HS4 boundary element blocks enhancer-mediated suppression of silencing. Mol. Cell Biol. 19, 3714–3726 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Knipper, R. et al. Improved post-transcriptional processing of an MDR1 retrovirus elevates expression of multidrug resistance in primary human hematopoietic cells. Gene Ther. 8, 239–246 (2001).

    CAS  PubMed  Google Scholar 

  46. Schambach, A. et al. Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol. Ther. 2, 435–445 (2000).

    CAS  PubMed  Google Scholar 

  47. Hildinger, M., Abel, K. L., Ostertag, W. & Baum, C. Design of 5′ untranslated sequences in retroviral vectors developed for medical use. J. Virol. 73, 4083–4089 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Robbins, P. B. et al. Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc. Natl Acad. Sci. USA 95, 10182–10187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hawley, R. G., Lieu, F. H., Fong, A. Z. & Hawley, T. S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

  50. Mickisch, G. H., Licht, T., Merlino, G. T., Gottesman, M. M. & Pastan, I. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res. 51, 5417–5424 (1991).

    CAS  PubMed  Google Scholar 

  51. Sorrentino, B. P. et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99–103 (1992).An MDR1 -expressing retroviral vector was shown to protect mice against the myelosuppressive effects of taxol. Furthermore, taxol treatment was shown to promote in vivo selection of transduced stem cells.

    CAS  PubMed  Google Scholar 

  52. Podda, S. et al. Transfer and expression of the human multiple drug resistance gene into live mice. Proc. Natl Acad. Sci. USA 89, 9676–9680 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Licht, T. et al. Drug selection with paclitaxel restores expression of linked IL-2 receptor γ-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc. Natl Acad. Sci. USA 99, 3123–3128 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardarelli, C. O., Aksentijevich, I., Pastan, I. & Gottesman, M. M. Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res. 55, 1086–1091 (1995).

    CAS  PubMed  Google Scholar 

  55. Hafkemeyer, P., Licht, T., Pastan, I. & Gottesman, M. M. Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers. Hum. Gene Ther. 11, 555–565 (2000).

    CAS  PubMed  Google Scholar 

  56. Sorrentino, B. P., McDonagh, K. T., Woods, D. & Orlic, D. Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 86, 491–501 (1995).

    CAS  PubMed  Google Scholar 

  57. Galipeau, J., Benaim, E., Spencer, H. T., Blakley, R. L. & Sorrentino, B. P. A bicistronic retroviral vector for protecting hematopoietic cells against antifolates and P-glycoprotein effluxed drugs. Hum. Gene Ther. 8, 1773–1783 (1997).

    CAS  PubMed  Google Scholar 

  58. Bunting, K. D., Galipeau, J., Topham, D., Benaim, E. & Sorrentino, B. P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92, 2269–2279 (1998).

    CAS  PubMed  Google Scholar 

  59. Bunting, K. D., Zhou, S., Lu, T. & Sorrentino, B. P. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96, 902–909 (2000).

    CAS  PubMed  Google Scholar 

  60. Johnstone, R. W., Cretney, E. & Smyth, M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93, 1075–1085 (1999).

    CAS  PubMed  Google Scholar 

  61. Smyth, M. J., Krasovskis, E., Sutton, V. R. & Johnstone, R. W. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl Acad. Sci. USA 95, 7024–7029 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sellers, S. E. et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood 97, 1888–1891 (2001).

    CAS  PubMed  Google Scholar 

  63. Williams, D. A., Hsieh, K., DeSilva, A. & Mulligan, R. C. Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate-resistant bone marrow. J. Exp. Med. 166, 210–218 (1987).

    CAS  PubMed  Google Scholar 

  64. Simonsen, C. C. & Levinson, A. D. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl Acad. Sci. USA 80, 2495–2499 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lewis, W. S. et al. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J. Biol. Chem. 270, 5057–5064 (1995).

    CAS  PubMed  Google Scholar 

  66. Chunduru, S. K. et al. Methotrexate-resistant variants of human dihydrofolate reductase. Effects of Phe31 substitutions. J. Biol. Chem. 269, 9547–9555 (1994).

    CAS  PubMed  Google Scholar 

  67. Blakley, R. L. & Sorrentino, B. P. In vitro mutations in dihydrofolate reductase that confer resistance to methotrexate: potential for clinical application. Hum. Mut. 11, 259–263 (1998).

    CAS  PubMed  Google Scholar 

  68. Corey, C. A., DeSilva, A. D., Holland, C. A. & Williams, D. A. Serial transplantation of methotrexate-resistant bone marrow: protection of murine recipients from drug toxicity by progeny of transduced stem cells. Blood 75, 337–343 (1990).

    CAS  PubMed  Google Scholar 

  69. Spencer, H. T., Sleep, S. E., Rehg, J. E., Blakley, R. L. & Sorrentino, B. P. A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood 87, 2579–2587 (1996).

    CAS  PubMed  Google Scholar 

  70. Zhao, S. C., Banerjee, D., Mineishi, S. & Bertino, J. R. Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum. Gene Ther. 8, 903–909 (1997).

    CAS  PubMed  Google Scholar 

  71. Flasshove, M. et al. Ex vivo expansion and selection of human CD34+ peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene transfer. Blood 85, 566–574 (1995).

    CAS  PubMed  Google Scholar 

  72. Flasshove, M., Banerjee, D., Bertino, J. R. & Moore, M. A. Increased resistance to methotrexate in human hematopoietic cells after gene transfer of the Ser31 DHFR mutant. Leukemia 9 (Suppl. 1), S34–S37 (1995).

    PubMed  Google Scholar 

  73. Allay, J. A. et al. Sensitization of hematopoietic stem and progenitor cells to trimetrexate using nucleoside transport inhibitors. Blood 90, 3546–3554 (1997).

    CAS  PubMed  Google Scholar 

  74. Allay, J. A. et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nature Med. 4, 1136–1143 (1998).Formal proof that a drug-resistance vector can promote in vivo selection of haematopoietic stem cells in mice. This was done using a DHFR resistance vector and a novel antifolate regimen.

    CAS  PubMed  Google Scholar 

  75. May, C., Gunther, R. & McIvor, R. S. Protection of mice from lethal doses of methotrexate by transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase activity. Blood 86, 2439–2448 (1995).

    CAS  PubMed  Google Scholar 

  76. Takebe, N. et al. Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene. Mol. Ther. 3, 88–96 (2001).

    CAS  PubMed  Google Scholar 

  77. Erickson, L. C., Laurent, G., Sharkey, N. A. & Kohn, K. W. DNA cross-linking and monoadduct repair in nitrosourea-treated human tumour cells. Nature 288, 727–729 (1980).

    CAS  PubMed  Google Scholar 

  78. Brent, T. P. et al. Repair of O-alkylpyrimidines in mammalian cells: a present consensus. Proc. Natl Acad. Sci. USA 85, 1759–1762 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Middlemas, D. S. et al. Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models. Clin. Cancer Res. 6, 998–1007 (2000).

    CAS  PubMed  Google Scholar 

  80. Gerson, S. L., Phillips, W., Kastan, M., Dumenco, L. L. & Donovan, C. Human CD34+ hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU. Blood 88, 1649–1655 (1996).

    CAS  PubMed  Google Scholar 

  81. Pegg, A. E. et al. Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 32, 11998–12006 (1993).

    CAS  PubMed  Google Scholar 

  82. Gerson, S. L., Zborowska, E., Norton, K., Gordon, N. H. & Willson, J. K. Synergistic efficacy of O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in a human colon cancer xenograft completely resistant to BCNU alone. Biochem. Pharmacol. 45, 483–491 (1993).

    CAS  PubMed  Google Scholar 

  83. Friedman, H. S. et al. Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J. Clin. Oncol. 16, 3570–3575 (1998).

    CAS  PubMed  Google Scholar 

  84. Spiro, T. P. et al. O6-benzylguanine: a clinical trial establishing the biochemical modulatory dose in tumor tissue for alkyltransferase-directed DNA repair. Cancer Res. 59, 2402–2410 (1999).

    CAS  PubMed  Google Scholar 

  85. Chinnasamy, N. et al. O6-benzylguanine potentiates the in vivo toxicity and clastogenicity of temozolomide and BCNU in mouse bone marrow. Blood 89, 1566–1573 (1997).

    CAS  PubMed  Google Scholar 

  86. Fairbairn, L. J., Watson, A. J., Rafferty, J. A., Elder, R. H. & Margison, G. P. O6-benzylguanine increases the sensitivity of human primary bone marrow cells to the cytotoxic effects of temozolomide. Exp. Hematol. 23, 112–116 (1995).

    CAS  PubMed  Google Scholar 

  87. Pegg, A. E. et al. Reaction of O6-benzylguanine-resistant mutants of human O6-alkylguanine-DNA alkyltransferase with O6-benzylguanine in oligodeoxyribonucleotides. J. Biol. Chem. 273, 10863–10867 (1998).

    CAS  PubMed  Google Scholar 

  88. Davis, B. M. et al. Characterization of the P140K, PVP(138-140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy. Hum. Gene Ther. 10, 2769–2778 (1999).

    CAS  PubMed  Google Scholar 

  89. Maze, R., Kurpad, C., Pegg, A. E., Erickson, L. C. & Williams, D. A. Retroviral-mediated expression of the P140A, but not P140A/G156A, mutant form of O6-methylguanine DNA methyltransferase protects hematopoietic cells against O6-benzylguanine sensitization to chloroethylnitrosourea treatment. J. Pharmacol. Exp. Ther. 290, 1467–1474 (1999).

    CAS  PubMed  Google Scholar 

  90. Reese, J. S. et al. Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis(2-chloroethyl)-1-nitrosourea. Proc. Natl Acad. Sci. USA 93, 14088–14093 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Maze, R. et al. Reversal of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced severe immunodeficiency by transduction of murine long-lived hemopoietic progenitor cells using O6-methylguanine DNA methyltransferase complementary DNA. J. Immunol. 158, 1006–1013 (1997).

    CAS  PubMed  Google Scholar 

  92. Moritz, T., Mackay, W., Glassner, B. J., Williams, D. A. & Samson, L. Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res. 55, 2608–2614 (1995).

    CAS  PubMed  Google Scholar 

  93. Davis, B. M. et al. Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 57, 5093–5099 (1997).

    CAS  PubMed  Google Scholar 

  94. Allay, J. A., Dumenco, L. L., Koc, O. N., Liu, L. & Gerson, S. L. Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells. Blood 85, 3342–3351 (1995).

    CAS  PubMed  Google Scholar 

  95. Sawai, N. et al. Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector. Mol. Ther. 3, 78–87 (2001).

    CAS  PubMed  Google Scholar 

  96. Koc, O. N. et al. ΔMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum. Gene Ther. 10, 1021–1030 (1999).

    CAS  PubMed  Google Scholar 

  97. Davis, B. M., Koc, O. N. & Gerson, S. L. Limiting numbers of G156A O6-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood 95, 3078–3084 (2000).A clear demonstration of the capacity of MGMT resistance systems to protect haematopoietic cells and allow for in vivo stem-cell selection. In this study, selection was used to overcome the requirement for myeloablation before transplant.

    CAS  PubMed  Google Scholar 

  98. Ragg, S. et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res. 60, 5187–5195 (2000).

    CAS  PubMed  Google Scholar 

  99. Zielske, S. P. & Gerson, S. L. Lentiviral transduction of P140K MGMT into human CD34+ hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol. Ther. 5, 381–387 (2002).

    CAS  PubMed  Google Scholar 

  100. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).Proof that gene therapy directed at stem cells is clinically effective. This study used a corrective gene-therapy vector to treat severe combined immunodeficiency.

    CAS  PubMed  Google Scholar 

  101. Malech, H. L. et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl Acad. Sci. USA 94, 12133–12138 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Persons, D. A. et al. Functional requirements for phenotypic correction of murine β-thalassemia: implications for human gene therapy. Blood 97, 3275–3282 (2001).

    CAS  PubMed  Google Scholar 

  103. Hesdorffer, C. et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J. Clin. Oncol. 16, 165–172 (1998).

    CAS  PubMed  Google Scholar 

  104. Hanania, E. G. et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc. Natl Acad. Sci. USA 93, 15346–15351 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cowan, K. H. et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin. Cancer Res. 5, 1619–1628 (1999).

    CAS  PubMed  Google Scholar 

  106. Moscow, J. A. et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 94, 52–61 (1999).

    CAS  PubMed  Google Scholar 

  107. Abonour, R. et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nature Med. 6, 652–658 (2000).A clinical trial of MDR1 gene therapy reporting significant levels of transduced blood cells in the bone marrow of adult cancer patients.

    CAS  PubMed  Google Scholar 

  108. Hanenberg, H. et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nature Med. 2, 876–882 (1996).The discovery that fibronectin fragments can enhance stem-cell gene transfer. This led to the widespread use of this technique in clinical gene-therapy protocols.

    CAS  PubMed  Google Scholar 

  109. Moritz, T. et al. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88, 855–862 (1996).

    CAS  PubMed  Google Scholar 

  110. Moritz, T., Patel, V. P. & Williams, D. A. Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J. Clin. Invest. 93, 1451–1457 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank G. Hoskins for her expert editorial assistance in preparing this manuscript. This work was supported in part by the National Heart, Lung and Blood Institute Program Project, ASSISI Foundation of Memphis and the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

brain tumours

breast cancer

Hodgkin's disease

paediatric acute lymphocytic leukaemia

testicular cancer

GenBank

feline leukaemia virus RD114 envelope

gibbon ape leukaemia virus envelope

HIV

lentiviral gag protein

vesicular stomatitis virus G protein

LocusLink

CD34

DHFR

fibronectin

granulocyte colony-stimulating factor

Mdr1

MDR1

MGMT

p27

Medscape DrugInfo

cyclophosphamide

doxorubicin

etoposide

methotrexate

paclitaxel

taxol

temozolomide

trimetrexate

vinblastine

OMIM

β-thalassaemia

chronic granulomatous disease

FURTHER INFORMATION

American Society of Gene Therapy

Food and Drug Administration site regarding Gene Therapy

Human ATP-Binding Cassette Transporters

National Heart, Lung, and Blood Institute Programs of Excellence in Gene Therapy

Recombinant DNA Advisory Committee site regarding Human Gene Therapy

Glossary

THERAPEUTIC INDEX

The difference in drug dose associated with a beneficial clinical response versus that causing undesirable side effects.

MYELOSUPPRESSION

Decreased production of blood cells due to toxic drug side effects. This can result in anaemia that requires red-blood-cell transfusion, increased susceptibility to infections due to low numbers of leukocytes and increased bleeding propensity due to insufficient numbers of platelets.

AUTOLOGOUS TRANSPLANTATION

Collection of a patient's own haematopoietic stem cells before high-dose chemotherapy, with subsequent re-administration of these cells after myelosuppressive treatments to allow for haematopoietic reconstitution and recovery.

TRANSDUCTION

The genetic modification of a cell using a viral vector. In the context of retroviral vectors, this means that the cell will have a stably integrated copy of the recombinant vector genome within the host-cell chromosome.

RETROVIRAL VECTOR

A disabled RNA virus in which the viral genes have been replaced with engineered sequences, such as drug-resistance genes. The vector particles can no longer replicate in cells, but can insert and express a therapeutic gene in appropriate target cells.

ONCORETROVIRUS

A class of simple retrovirus that is derived from mouse and avian viruses. These viruses lack expression of accessory proteins, and require cell division for stable integration into the target-cell genome.

PSEUDOTYPE

A specific characteristic of a retrovirus, determined by the envelope protein that is present on the surface of the viral particle. The choice of envelope protein will define the tropism for the virus, and affect the efficiency by which stem cells are transduced.

HUMAN FOAMY VIRUS

Retroviruses that belong to the Spumavirus family. Despite the name, these viruses are not pathogenic in humans, and have several unique properties that are useful for gene-therapy vectors.

LENTIVIRAL VECTOR

A vector that is based on retroviruses that infect human and primate species. These have a more complex genomic structure than oncoretroviruses, and express several accessory proteins in addition to gag, pol and env. The main advantage for gene therapy is their relatively increased efficiency for stably transducing quiescent cells.

CHROMATIN INSULATOR

A genetic element found in a wide variety of species that protects a gene from undesired cis-linked modulators of gene expression. Insulators are classically defined by their ability to block enhancer function, but they can also block elements that silence gene expression.

BICISTRONIC VECTOR

A vector that is designed to express two distinct genes simultaneously.

MYELOABLATIVE CONDITIONING

A treatment given to a patient before stem-cell transplantation that is designed to enhance engraftment of subsequently administered stem cells. These treatments, such as irradiation or high-dose chemotherapy, can be relatively toxic to the patient.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorrentino, B. Gene therapy to protect haematopoietic cells from cytotoxic cancer drugs. Nat Rev Cancer 2, 431–441 (2002). https://doi.org/10.1038/nrc823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing