Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Enzymatic incorporation of an azide-modified UTP analog into oligoribonucleotides for post-transcriptional chemical functionalization

Abstract

This protocol describes the detailed experimental procedure for the synthesis of an azide-modified uridine triphosphate analog and its effective incorporation into an oligoribonucleotide by in vitro transcription reactions. Furthermore, procedures for labeling azide-modified oligoribonucleotides post-transcriptionally with biophysical probes by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and Staudinger reactions are also provided. This post-transcriptional chemical modification protocol is simple and modular, and it affords labeled oligonucleotides in reasonable amounts for biophysical assays. The procedure for enzymatic incorporation of the monophosphate of azide-modified UTP into an oligoribonucleotide transcript takes 2 d, and subsequent post-transcriptional chemical functionalization of the transcript takes about 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Incorporation of the monophosphate of 7 into an oligoribonucleotide by in vitro transcription reaction.
Figure 3: Post-transcriptional chemical modification of transcript 10.
Figure 4: UV shadow (short wave UV, 254 nm) of polyacrylamide gels of oligoribonucleotide products obtained from click reactions between azide-modified oligoribonucleotide 10 and alkyne substrates 11 and 13.
Figure 5: Rubber bladder filled with hydrogen gas.
Figure 6
Figure 7: Emission profile (2 μM) of click product 12.

Similar content being viewed by others

References

  1. Khakshoor, O. & Kool, E.T. Chemistry of nucleic acids: impacts in multiple fields. Chem. Commun. 47, 7018–7024 (2011).

    Article  CAS  Google Scholar 

  2. Wachowius, F. & Höbartner, C. Chemical RNA modifications for studies of RNA structure and dynamics. ChemBioChem. 11, 469–480 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Bell, N.M. & Micklefield, J. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. ChemBioChem. 10, 2691–2703 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Asseline, U. Development and applications of fluorescent oligonucleotides. Curr. Org. Chem. 10, 491–518 (2006).

    Article  CAS  Google Scholar 

  5. Condon, A. Designed DNA molecules: principles and applications of molecular nanotechnology. Nat. Rev. Genet. 7, 565–575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seeman, N.C. An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krishnan, Y. & Simmel, F.C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).

    Article  CAS  Google Scholar 

  8. Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kinsella, J.M. & Ivanisevic, A. DNA-templated magnetic nanowires with different compositions: fabrication and analysis. Langmuir 23, 3886–3890 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Heckel, A. & Famulok, M. Building objects from nucleic acids for a nanometer world. Biochimie 90, 1096–1107 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Blackburn, G.M., Gait, M.J., Loakes, D. & Williams, D.M. Nucleic Acids in Chemistry and Biology 3rd edn. Royal Society of Chemistry, 143–166 (2006).

  12. Greco, N.J. & Tor, Y. Synthesis and site-specific incorporation of a simple fluorescent pyrimidine. Nat. Protoc. 2, 305–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Weisbrod, S.H. & Marx, A. Novel strategies for the site-specific covalent labelling of nucleic acids. Chem. Commun. 5675–5685 (2008).

  14. Jäger, S. et al. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 127, 15071–15082 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. Srivatsan, S.G. & Tor, Y. Synthesis and enzymatic incorporation of a fluorescent pyrimidine ribonucleotide. Nat. Protoc. 2, 1547–1555 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Pawar, M.G. & Srivatsan, S.G. Synthesis, photophysical characterization, and enzymatic incorporation of a microenvironment-sensitive fluorescent uridine analog. Org. Lett. 13, 1114–1117 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kimoto, M. et al. Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res. 35, 5360–5369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stengel, G., Urban, M., Purse, B.W. & Kuchta, R.D. Incorporation of the fluorescent ribonucleotide analogue tCTP by T7 RNA polymerase. Anal. Chem. 82, 1082–1089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lang, K. & Micura, R. The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat. Protoc. 3, 1457–1466 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hikida, Y., Kimoto, M., Yokoyama, S. & Hirao, I. Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat. Protoc. 5, 1312–1323 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Srivatsan, S.G. & Tor, Y. Enzymatic incorporation of emissive pyrimidine ribonucleotides. Chem. Asian J. 4, 419–427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanpure, A.A. & Srivatsan, S.G. A microenvironment-sensitive fluorescent pyrimidine ribonucleoside analogue: synthesis, enzymatic incorporation, and fluorescence detection of a DNA abasic site. Chem. Eur. J. 17, 12820–12827 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Gramlich, P.M.E., Wirges, C.T., Manetto, A. & Carell, T. Postsynthetic DNA modification through the copper-catalyzed azide–alkyne cycloaddition reaction. Angew. Chem Int. Ed. 47, 8350–8358 (2008).

    Article  CAS  Google Scholar 

  24. Best, M.D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48, 6571–6584 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lallana, E., Riguera, R. & Fernandez-Megia, E. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide–alkyne cycloadditions. Angew. Chem. Int. Ed. 50, 8794–8804 (2011).

    Article  CAS  Google Scholar 

  26. Omumi, A., Beach, D.G., Baker, M., Gabryelski, W. & Manderville, R.A. Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J. Am. Chem. Soc. 133, 42–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Jin, S., Miduturu, C.V., McKinney, D.C. & Silverman, S.K. Synthesis of amine- and thiol-modified nucleoside phosphoramidites for site-specific introduction of biophysical probes into RNA. J. Org. Chem. 70, 4284–4299 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Weisbrod, S.H. & Marx, A. A nucleoside triphosphate for site-specific labelling of DNA by the Staudinger ligation. Chem. Commun. 1828–1830 (2007).

  29. Gramlich, P.M.E., Warncke, S., Gierlich, J. & Carell, T. Click–click–click: single to triple modification of DNA. Angew. Chem. Int. Ed. 47, 3442–3444 (2008).

    Article  CAS  Google Scholar 

  30. Sirivolu, V.R., Chittepu, P. & Seela, F. DNA with branched internal side chains: synthesis of 5-tripropargylamine-dU and conjugation by an azide-alkyne double click reaction. ChemBioChem. 9, 2305–2316 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, Y., Suzuki, Y. & Komiyama, M. Click chemistry for the identification of G-quadruplex structures: discovery of a DNA–RNA G-quadruplex. Angew. Chem. Int. Ed. 48, 3281–3284 (2009).

    Article  CAS  Google Scholar 

  32. Franzini, R.M. & Kool, E.T Efficient nucleic acid detection by templated reductive quencher release. J. Am. Chem. Soc. 131, 16021–16023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beyer, C. & Wagenknecht, H.-A. In situ azide formation and 'click' reaction of nile red with DNA as an alternative postsynthetic route. Chem. Commun. 46, 2230–2231 (2010).

    Article  CAS  Google Scholar 

  34. Sharma, A.K. & Heemstra, J.M. Small-molecule-dependent split aptamer ligation. J. Am. Chem. Soc. 133, 12426–12429 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Pianowski, Z., Gorska, K., Oswald, L., Merten, C.A. & Winssinger, N. Imaging of mRNA in live cells using nucleic acid-templated reduction of azidorhodamine probes. J. Am. Chem. Soc. 131, 6492–6497 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Furukawa, K. et al. Reduction-triggered fluorescent amplification probe for the detection of endogenous RNAs in living human cells. Bioconjugate Chem. 20, 1026–1036 (2009).

    Article  CAS  Google Scholar 

  37. El-Sagheer, A.H. & Brown, T. New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes. Proc. Natl. Acad. Sci. USA 107, 15329–15334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jayaprakash, K.N. et al. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates. Org. Lett. 12, 5410–5413 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Van Delft, P. et al. Synthesis of oligoribonucleic acid conjugates using a cyclooctyne phosphoramidite. Org. Lett. 12, 5486–5489 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Peacock, H., Maydanovych, O. & Beal, P.A. N2-Modified 2-aminopurine ribonucleosides as minor-groove-modulating adenosine replacements in duplex RNA. Org. Lett. 12, 1044–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Onizuka, K., Shibata, A., Taniguchi, Y. & Sasaki, S. Pin-point chemical modification of RNA with diverse molecules through the functionality transfer reaction and the copper-catalyzed azide–alkyne cycloaddition reaction. Chem. Commun. 47, 5004–5006 (2011).

    Article  CAS  Google Scholar 

  42. Paredes, E. & Das, S.R Click chemistry for rapid labeling and ligation of RNA. ChemBioChem. 12, 125–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Wada, T. et al. Synthesis and properties of 2-azidodeoxyadenosine and its incorporation into oligodeoxynucleotides. Tet. Lett. 42, 9215–9219 (2001).

    Article  CAS  Google Scholar 

  44. Kiviniemi, A., Virta, P. & Lönnberg, H. Utilization of intrachain 4′-C-azidomethylthymidine for preparation of oligodeoxyribonucleotide conjugates by click chemistry in solution and on a solid support. Bioconjugate Chem. 19, 1726–1734 (2008).

    Article  CAS  Google Scholar 

  45. Pourceau, G., Meyer, A., Vasseur, J.-J. & Morvan, F. Azide solid support for 3′-conjugation of oligonucleotides and their circularization by click chemistry. J. Org. Chem. 74, 6837–6842 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Aigner, M. et al. Chemical synthesis of site-specifically 2′-azido-modified RNA and potential applications for bioconjugation and RNA interference. ChemBioChem. 12, 47–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Rao, H., Sawant, A.A., Tanpure, A.A. & Srivatsan, S.G. Post-transcriptional chemical functionalization of azide-modified oligoribonucleotides by bioorthogonal click and Staudinger reactions. Chem. Commun. 48, 498–500 (2012).

    Article  CAS  Google Scholar 

  48. Moffatt, J.G. A general synthesis of nucleoside-5′ triphosphates. Can. J. Chem. 42, 599–604 (1964).

    Article  CAS  Google Scholar 

  49. Aoki, S., Matsuo, N., Hanaya, K., Yamada, Y. & Kageyama, Y. Design and synthesis of a photocleavable biotin-linker for the photoisolation of ligand–receptor complexes based on the photolysis of 8-quinolinyl sulfonates in aqueous solution. Bioorg. Med. Chem. 17, 3405–3413 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Coutouli-Argyropoulou, E., Tsitabani, M., Petrantonakis, G., Terzis, A. & Raptopoulou, C. Labeling of organic biomolecules with ethynylferrocene. Org. Biomol. Chem. 1, 1382–1388 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell,, A.R. Vogel's Textbook of Practical Organic Chemistry 5th ed. (Pearson Education, 2008).

  52. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the Department of Science and Technology, India (SR/S1/OC-51/2009). A.A.T. and A.A.S. are thankful to the Council of Scientific and Industrial Research, India, for a graduate research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.G.S. designed and directed the research. H.R. and A.A.T. synthesized the triphosphate analog and optimized the conditions for Staudinger reduction of azide-modified RNA. A.A.S. performed post-transcriptional click reactions on RNA. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Seergazhi G Srivatsan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, H., Tanpure, A., Sawant, A. et al. Enzymatic incorporation of an azide-modified UTP analog into oligoribonucleotides for post-transcriptional chemical functionalization. Nat Protoc 7, 1097–1112 (2012). https://doi.org/10.1038/nprot.2012.046

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.046

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing