Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product–free environment

Abstract

The protocols described here are comprehensive instructions for deriving human embryonic stem (hES) cell lines in xeno-free conditions from cryopreserved embryos. Details are included for propagation, cryopreservation and characterization. Initial derivation is on feeder cells and is followed by adaptation to a feeder-free environment; competent technicians can perform these simplified methods easily. From derivation to cryopreservation of fully characterized initial stocks takes 3–4 months. These protocols served as the basis for standard operating procedures (SOPs), with both operational and technical components, that we set to meet good manufacturing practice (GMP) and UK regulatory body requirements for derivation of clinical-grade cells. As such, these SOPs are currently used in our current GMP compliant facility to derive hES cell lines ab initio, in an animal product–free environment; these lines are suitable for research and potentially for clinical use in cell therapy. So far, we have derived eight clinical-grade lines, which will be freely available to the scientific community after submission/accession to the UK Stem Cell Bank.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of ICM outgrowth and hES cell line.
Figure 2
Figure 3
Figure 4: Growth of hES cells under xeno-free feeder-free conditions.
Figure 5: Characterization of an hES cell line.

Similar content being viewed by others

References

  1. Thomson, J.C. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Salaway, T. & Ilic, D. Logistics of stem cell isolation, preparation and delivery for heart repair: concerns of clinicians, manufacturers, investors and public health. Regen. Med. 3, 83–91 (2008).

    Article  PubMed  Google Scholar 

  3. Ammann, A.J. et al. Acquired immunodeficiency in an infant: possible transmission by means of blood products. Lancet 321, 956–958 (1983).

    Article  Google Scholar 

  4. Quint, W.G., Fetter, W.P., van Os, H.C. & Heijtink, R.A. Absence of hepatitis B virus (HBV) DNA in children born after exposure of their mothers to HBV during in vitro fertilization. J. Clin. Microbiol. 32, 1099–1100 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Llewelyn, C.A. et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363, 417–421 (2004).

    CAS  PubMed  Google Scholar 

  6. Cobo, F. et al. Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: toward an implementation of microbiological quality assurance program in stem cell banks. Cloning Stem Cells 10, 65–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Braude, P., Minger, S.L. & Warwick, R.M. Stem cell therapy: hope or hype? BMJ 330, 1159–1160 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwartz, S.D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379, 713–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Brindley, D. & Mason, C. Human embryonic stem cell therapy in the post-Geron era. Regen. Med. 7, 17–18 (2012).

    Article  PubMed  Google Scholar 

  10. Crook, J.M. et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1, 490–494 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lei, T. et al. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res. 17, 682–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Valamehr, B., Tsutsui, H., Ho, C.M. & Wu, H. Developing defined culture systems for human pluripotent stem cells. Regen. Med. 6, 623–634 (2011).

    Article  PubMed  Google Scholar 

  13. Meng, G., Liu, S., Li, X., Krawetz, R. & Rancourt, D.E. Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev. 19, 547–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Ellerstrom, C. et al. Derivation of a xeno-free human embryonic stem cell line. Stem. Cells 24, 2170–2176 (2006).

    Article  PubMed  Google Scholar 

  15. Rajala, K. et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 5, e10246 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ilic, D. et al. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14, 122–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Nakajima, F., Tokunaga, K. & Nakatsuji, N. Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 25, 983–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, C.J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025 (2005).

    Article  PubMed  Google Scholar 

  19. Taylor, C.J., Bolton, E.M. & Bradley, J.A. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos. Trans. R Soc. Lond. B Biol. Sci. 366, 2312–2322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunt, C.J. Cryopreservation of human stem cells for clinical application: a review. Transfus. Med. Hemother. 38, 107–123 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Skottman, H., Narkilahti, S. & Hovatta, O. Challenges and approaches to the culture of pluripotent human embryonic stem cells. Regen. Med. 2, 265–273 (2007).

    Article  PubMed  Google Scholar 

  22. Pickering, S.J. et al. Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reprod. Biomed. Online 7, 353–364 (2003).

    Article  PubMed  Google Scholar 

  23. Ström, S. et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum. Reprod. 22, 3051–3058 (2007).

    Article  PubMed  Google Scholar 

  24. Stephenson, E.L. & Braude, P.R. Derivation of the King's College London human embryonic stem cell lines. In Vitro Cell Dev. Biol. Anim. 46, 178–185 (2010).

    Article  PubMed  Google Scholar 

  25. Ström, S., Holm, F., Bergström, R., Strömberg, A.M. & Hovatta, O. Derivation of 30 human embryonic stem cell lines—improving the quality. In Vitro Cell Dev. Biol. Anim. 46, 337–344 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bergström, R., Ström, S., Holm, F., Feki, A. & Hovatta, O. Xeno-free culture of human pluripotent stem cells. Methods Mol. Biol. 767, 125–136 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. Ilic, D. Culture of human embryonic stem cells and the extracellular matrix microenvironment. Regen. Med. 1, 95–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Ilic, D. et al. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem. Cells Dev. 18, 1343–1350 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Reubinoff, B.E., Pera, M.F., Vajta, G. & Trounson, A.O. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod. 16, 2187–2194 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, C.Q., Mai, Q.Y., Li, T. & Zhuang, G.L. Cryopreservation of human embryonic stem cells by vitrification. Chin. Med. J. (Engl.) 117, 1050–1055 (2004).

    Google Scholar 

  31. Ilic, D., Genbacev, O. & Krtolica, A. Derivation of hESC from intact blastocysts. Curr. Protoc. Stem Cell Biol 1, 1A.2.1–1A.2.18 (2007).

    Article  Google Scholar 

  32. Zhang, X. et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24, 2669–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Feki, A. et al. Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell stage embryo. Swiss Med. Wkly. 138, 540–550 (2008).

    CAS  PubMed  Google Scholar 

  34. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J. & Lanza, R. Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J. & Lanza, R. Derivation of human embryonic stem cells from single blastomeres. Nat. Protoc. 2, 1963–1972 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Chung, Y. et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2, 113–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Giritharan, G., Ilic, D., Gormley, M. & Krtolica, A. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS ONE 6, e26570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ilic, D. et al. Effect of karyotype on successful human embryonic stem cell derivation. Stem Cells Dev. 19, 39–46 (2010).

    Article  PubMed  Google Scholar 

  39. Adewumi, O. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Strulovici, Y., Leopold, P.L., O'Connor, T.P., Pergolizzi, R.G. & Crystal, R.G. Human embryonic stem cells and gene therapy. Mol. Ther. 15, 850–866 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Stephenson, E.L., Braude, P.R. & Mason, C. Proposal for a universal minimum information convention for the reporting on the derivation of human embryonic stem cell lines. Regen. Med. 1, 739–750 (2006).

    Article  PubMed  Google Scholar 

  42. Stephenson, E. et al. Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells. J. R. Soc. Interface 7 (suppl. 6), S677–S688 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council, UK (grants G0801061 and G0701172). We thank our collaborators at the Cytogenetics Department and the Clinical Transplantation Laboratory, Guy's Hospital, for genetic analyses and HLA typing; A. Huhn and P. Sharpe at the Dental Institute and C. Hobbs, Histology Manager at the Wolfson Centre for Age-Related Diseases, School of Biomedical Sciences, King's College London, for teratoma-related work; and J.-R. Fantino from Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Marseille, for editing movies. We also want to thank Y. Khalaf, director of the Assisted Conception Unit of Guy's and St. Thomas' National Health Service (NHS) Foundation Trust, and his staff for supporting the research program. We are especially indebted to the patients who donated embryos.

Author information

Authors and Affiliations

Authors

Contributions

E.S., P.B. and D.I. designed the protocol, carried out the work, analyzed the results and prepared the manuscript. L.J. and C.M. designed the protocol, carried out the work and analyzed the results. V.W., N.K. and S.C. carried out the work. G.C. consented the patients. Y.D. recorded an ICM isolation movie.

Corresponding author

Correspondence to Dusko Ilic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Time-lapse movie showing development of human 2PN embryo into fully expanded blastocyst. (MOV 7985 kb)

Supplementary Video 2

Micromanipulator set-up. (MOV 8376 kb)

Supplementary Video 3

Zona Pellucida (ZP) drilling with a stream of acid Tyrode's solution. ICM, inner cell mass. Asterisk (*), thinning ZP and forming a hole through which ICM can be aspirated. (MOV 4178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, E., Jacquet, L., Miere, C. et al. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product–free environment. Nat Protoc 7, 1366–1381 (2012). https://doi.org/10.1038/nprot.2012.080

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.080

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing