Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy

Abstract

The utility of nuclear magnetic resonance (NMR) spectroscopy as a tool for the study of biomolecular structure and dynamics has benefited from the development of facile labeling methods that incorporate NMR active probes at key positions in the molecule. Here we describe a protocol for the labeling of proteins that facilitates their study using a technique that is sensitive to millisecond conformational exchange processes. The samples necessary for an analysis of exchange dynamics are discussed, using the Abp1p SH3 domain from Saccharomyces cerevisiae as an example. For this system, the time frame for production of each sample, including in vitro refolding, is about 80 h. The samples so produced facilitate the measurement of accurate chemical shifts of low populated, invisible conformers that are part of the exchange pathway. The accuracy of the methodology has been established experimentally and the chemical shifts that are obtained provide important restraints in structure calculations of the excited state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mittermaier, A. & Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    Article  CAS  Google Scholar 

  2. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  3. Goto, N.K. & Kay, L.E. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592 (2000).

    Article  CAS  Google Scholar 

  4. Sattler, M. et al. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  5. Carr, H.Y. & Purcell, E.M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article  CAS  Google Scholar 

  6. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  CAS  Google Scholar 

  7. Hill, R.B. et al. Molecular motions and protein folding: characterization of the backbone dynamics and folding equilibrium of а2D using 13C NMR spin relaxation. J. Am. Chem. Soc. 122, 11610–11619 (2000).

    Article  CAS  Google Scholar 

  8. Korzhnev, D.M. et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430, 586–590 (2004).

    Article  CAS  Google Scholar 

  9. Zeeb, M. & Balbach, J. NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements. J. Am. Chem. Soc. 127, 13207–13212 (2005).

    Article  CAS  Google Scholar 

  10. Sugase, K. et al. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article  CAS  Google Scholar 

  11. Eisenmesser, E.Z. et al. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    Article  CAS  Google Scholar 

  12. Wolf-Watz, M. et al. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nat. Struct. Mol. Biol. 11, 945–949 (2004).

    Article  CAS  Google Scholar 

  13. Eisenmesser, E.Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  CAS  Google Scholar 

  14. Boehr, D.D. et al. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    Article  CAS  Google Scholar 

  15. Vallurupalli, P. & Kay, L.E. Complementarity of ensemble and single-molecule measures of protein motion: a relaxation dispersion NMR study of an enzyme complex. Proc. Natl. Acad. Sci. USA 103, 11910–11915 (2006).

    Article  CAS  Google Scholar 

  16. Watt, E.D. et al. The mechanism of rate-limiting motions in enzyme function. Proc. Natl. Acad. Sci. USA 104, 11981–11986 (2007).

    Article  CAS  Google Scholar 

  17. Mulder, F.A.A. et al. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935 (2001).

    Article  CAS  Google Scholar 

  18. Palmer A.G. III et al. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204–238 (2001).

    Article  CAS  Google Scholar 

  19. Skrynnikov, N.R. et al. Reconstructing NMR spectra of 'invisible' excited protein states using HSQC and HMQC experiments. J. Am. Chem. Soc. 124, 12352–12360 (2002).

    Article  CAS  Google Scholar 

  20. Korzhnev, D.M. & Kay, L.E. Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc. Chem. Res. 41, 442–451 (2008).

    Article  CAS  Google Scholar 

  21. Spera, S. & Bax, A. Empirical correlation between protein backbone conformation and Ca and Cb 13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 113, 5490–5492 (1991).

    Article  CAS  Google Scholar 

  22. Wishart, D.S. & Sykes, B.D. The 13C chemical-shift index—a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994).

    Article  CAS  Google Scholar 

  23. Wishart, D.S. & Case, D.A. Use of chemical shifts in macromolecular structure determination. Methods Enzymol. 338, 3–34 (2002).

    Article  Google Scholar 

  24. Shen, Y. et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105, 4685–4690 (2008).

    Article  CAS  Google Scholar 

  25. Cavalli, A. et al. Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA 104, 9615–9620 (2007).

    Article  CAS  Google Scholar 

  26. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  Google Scholar 

  27. Tolman, J.R. et al. Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  28. Kay, L.E. et al. 3-Dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89, 496–514 (1990).

    CAS  Google Scholar 

  29. Bax, A. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 1–16 (2003).

    Article  CAS  Google Scholar 

  30. Prestegard, J.H. et al. Determination of protein backbone structures from residual dipolar couplings. Methods Enzymol. 394, 175–209 (2005).

    Article  CAS  Google Scholar 

  31. Hansen, D.F. et al. Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy. How well can we do? J. Am. Chem. Soc. 130, 2667–2675 (2008).

    Article  CAS  Google Scholar 

  32. Shen, Y. & Bax, A. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 (2007).

    Article  CAS  Google Scholar 

  33. Igumenova, T.I. et al. Characterization of chemical exchange using residual dipolar coupling. J. Am. Chem. Soc. 129, 13396–13397 (2007).

    Article  CAS  Google Scholar 

  34. Vallurupalli, P. et al. Measurement of bond vector orientations in invisible excited states of proteins. Proc. Natl. Acad. Sci. USA 104, 18473–18477 (2007).

    Article  CAS  Google Scholar 

  35. Kay, L.E. et al. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR-spectroscopy—application to Staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  36. LeMaster, D.M. & Kushlan, D.M. Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J. Am. Chem. Soc. 118, 9255–9264 (1996).

    Article  Google Scholar 

  37. Mulder, F.A.A. et al. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 124, 1443–1451 (2002).

    Article  CAS  Google Scholar 

  38. Lundström, P. et al. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. J. Biomol. NMR. 44, 139–155 (2009).

    Article  Google Scholar 

  39. Loria, J.P. et al. A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331–2332 (1999).

    Article  CAS  Google Scholar 

  40. Tollinger, M. et al. Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 123, 11341–11352 (2001).

    Article  CAS  Google Scholar 

  41. Ishima, R. & Torchia, D.A. Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J. Biomol. NMR 25, 243–248 (2003).

    Article  CAS  Google Scholar 

  42. Ishima, R. et al. Carbonyl carbon transverse relaxation dispersion measurements and ms–μs timescale motion in a protein hydrogen bond network. J. Biomol. NMR 29, 187–198 (2004).

    Article  CAS  Google Scholar 

  43. Lundström, P. et al. Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples. J. Biomol. NMR 42, 35–47 (2008).

    Article  Google Scholar 

  44. Lundström, P. et al. Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J. Am. Chem. Soc. 131, 1915–1926 (2009).

    Article  Google Scholar 

  45. Vallurupalli, P. et al. CPMG relaxation dispersion NMR experiments measuring glycine 1Hα and 13Cα chemical shifts in the 'invisible' excited states of proteins. J. Biomol. NMR. 45, 45–55 (2009).

    Article  CAS  Google Scholar 

  46. Lundström, P. et al. Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. J. Biomol. NMR 38, 199–212 (2007).

    Article  Google Scholar 

  47. Tsumoto, K. et al. Practical considerations in refolding proteins from inclusion bodies. Prot. Expr. Pur. 28, 1–8 (2003).

    Article  CAS  Google Scholar 

  48. Tsumoto, K. et al. Review: why is arginine effective in suppressing aggregation? Protein Peptide Lett. 12, 613–619 (2005).

    Article  CAS  Google Scholar 

  49. Middelberg, A.P.J. Preparative protein refolding. Trends Biotechnol. 20, 437–443 (2002).

    Article  CAS  Google Scholar 

  50. Voet, D. & Voet, J.G. Biochemistry 3rd edn. 1030–1045 (John Wiley & Sons, Inc., Hoboken, NJ, 1995).

  51. Yamazaki, T. et al. Assignment of backbone resonances for larger proteins using the C-13-H-1 coherence of a H-1(alpha)-, H-2-, C-13-, and N-15-labeled sample. J. Am. Chem. Soc. 119, 872–880 (1997).

    Article  CAS  Google Scholar 

  52. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    Article  CAS  Google Scholar 

  53. Wasmer, C. et al. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  Google Scholar 

  54. Rath, A. & Davidson, A.R. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Protein Sci. 9, 2457–2469 (2000).

    Article  CAS  Google Scholar 

  55. Drubin, D.G. et al. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343, 288–290 (1990).

    Article  CAS  Google Scholar 

  56. Lila, T. & Drubin, D.G. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol. Biol. Cell 8, 367–385 (1997).

    Article  CAS  Google Scholar 

  57. Haynes, J. et al. The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context. Genetics 176, 193–208 (2007).

    Article  CAS  Google Scholar 

  58. Ishima, R. et al. Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J. Am. Chem. Soc. 120, 10534–10542 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Canadian Institutes of Health Research (CIHR) to L.E.K. P.L. is supported by the Swedish Research Council and D.F.H. holds a CIHR postdoctoral fellowship. L.E.K. is the recipient of a Canada Research Chair in Biochemistry.

P.L. and L.E.K. conceived the labeling strategies. P.L., P.V. and D.F.H. produced the protein samples and validated the methodology. P.L. and L.E.K. wrote the paper. L.E.K. supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis E Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundström, P., Vallurupalli, P., Hansen, D. et al. Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 4, 1641–1648 (2009). https://doi.org/10.1038/nprot.2009.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing