Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combining patch-clamping of cells in brain slices with immunocytochemical labeling to define cell type and developmental stage

Abstract

In neuroscience, combining patch-clamping with protein identification in the same cell is becoming increasingly important to define which subtype or developmental stage of a neuron or glial cell is being recorded from, and to attribute measured membrane currents to expressed ion channels or receptors. Here, we describe a protocol to achieve this when studying cells in acute brain slices, which antibodies penetrate poorly into and for which detergent permeabilization cannot be used when using antibodies that recognize lipid components such as O4 sulfatide. The method avoids the need for resectioning of the electrophysiologically recorded slices. It employs filling of the cell with a fluorescent dye during whole-cell recording, to allow subsequent localization of the cell, followed by fixation and free-floating section labeling with up to three antibodies, which may recognize membrane, nuclear or cytosolic proteins. With practice, 80% of patch-clamped cells can be retrieved and have their proteins identified in this way. The entire protocol can be completed in 3–4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Documenting cell position in asymmetrical and symmetrical slices.
Figure 2: Combining whole-cell clamping with antibody labeling to GFAP.
Figure 3: Combining whole-cell clamping with antibody labeling to the lipid sulfatide O4.
Figure 4: Combining whole-cell clamping with antibody labeling to the proteoglycan NG2 and the nuclear transcription factor Olig2, and nuclear labeling with DAPI.
Figure 5: Combining whole-cell clamping with antibody labeling to the NMDA receptor subunit NR1.

Similar content being viewed by others

References

  1. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  Google Scholar 

  2. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. 562, 9–26 (2005).

    Article  CAS  Google Scholar 

  3. Jessell, T.M. & Sanes, J.R. The decade of the developing brain. Curr. Opin. Neurobiol. 10, 599–611 (2000).

    Article  CAS  Google Scholar 

  4. Deloulme, J.C. et al. Nuclear expression of S100β in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes' maturation. Mol. Cell. Neurosci. 27, 453–465 (2004).

    Article  CAS  Google Scholar 

  5. Grateron, L. et al. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. J. Chem. Neuroanat. 26, 311–316 (2003).

    Article  CAS  Google Scholar 

  6. Gurantz, D., Lautermilch, N.J., Watt, S.D. & Spitzer, N.C. Sustained upregulation in embryonic spinal neurons of a Kv3.1 potassium channel gene encoding a delayed rectifier current. J. Neurobiol. 42, 347–356 (2000).

    Article  CAS  Google Scholar 

  7. Ullensvang, K., Lehre, K.P., Storm-Mathisen, J. & Danbolt, N.C. Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur. J. Neurosci. 9, 1646–1655 (1997).

    Article  CAS  Google Scholar 

  8. Liu, X.B., Murray, K.D. & Jones, E.G. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J. Neurosci. 24, 8885–8895 (2004).

    Article  CAS  Google Scholar 

  9. Van Gelder, R.N., von Zastrow, M.E., Yool, A., Dement, W.C., Barchas, J.D. & Eberwine, J.H. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667 (1990).

    Article  CAS  Google Scholar 

  10. Surmeier, D.J., Eberwine, J., Wilson, C.J., Cao, Y., Stefani, A. & Kitai, S.T. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 89, 10178–10182 (1992).

    Article  CAS  Google Scholar 

  11. Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).

    Article  CAS  Google Scholar 

  12. Jonas, P., Racca, C., Sakmann, B., Seeburg, P.H. & Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289 (1994).

    Article  CAS  Google Scholar 

  13. Guyon, A., Laurent, S., Paupardin-Tritsch, D., Rossier, J. & Eugene, D. Incremental conductance levels of GABAA receptors in dopaminergic neurones of the rat substantia nigra pars compacta. J. Physiol. 516, 719–737 (1999).

    Article  CAS  Google Scholar 

  14. Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y. & Okabe, M. Green fluorescent protein as a marker in transgenic mice. Dev. Growth Differ. 37, 455–459 (1995).

    Article  CAS  Google Scholar 

  15. Zhuo, L., Sun, B., Zhang, C.-L., Fine, A., Chiu, S.-Y. & Messing, A. Live astrocytes visualised by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36–42 (1997).

    Article  CAS  Google Scholar 

  16. Mallon, B.S., Shick, H.E., Kidd, G.J. & Macklin, W.B. Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J. Neurosci. 22, 876–885 (2002).

    Article  CAS  Google Scholar 

  17. Yuan, X., Chittajallu, R., Belachew, S., Anderson, S., McBain, C.J. & Gallo, V. Expression of the green fluorescent protein in the oligodendrocyte lineage: a transgenic mouse for developmental and physiological studies. J. Neurosci. Res. 70, 529–545 (2002).

    Article  CAS  Google Scholar 

  18. Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 (2001).

    Article  CAS  Google Scholar 

  19. Monyer, H. & Markram, H. Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90–97 (2004).

    Article  CAS  Google Scholar 

  20. Kawaguchi, Y. & Kubota, Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387–396 (1993).

    Article  CAS  Google Scholar 

  21. Bergles, D.E., Roberts, J.D., Somogyi, P. & Jahr, C.E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    Article  CAS  Google Scholar 

  22. Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. 561, 109–122 (2004).

    Article  CAS  Google Scholar 

  23. Káradóttir, R., Cavelier, P., Bergersen, L.H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    Article  Google Scholar 

  24. Sakmann, B. & Stuart, G. Patch-pipette recordings from the soma, dendrites, and axon of neurons in brain slices. in Single-Channel Recording 2nd edn. (eds. Sakmann, B. and Neher, E.) 199–211 (Plenum, New York, 1995).

  25. Gibb, A.J. Patch-clamp recording. in Ion Channels: A Practical Approach (ed. Ashley, R.H.) 1–27 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  26. Paxinos, G. & Watson, C. in The Rat Brain in Stereotaxic Coordinates Plates 15 and 45 (Academic Press, Sydney, Australia, 1982).

    Google Scholar 

  27. Holmseth, S., Lehre, K.P. & Danbolt, N.C. Specificity controls for immunocytochemistry. Anat. Embryol. (Berl.), 211, 257–266 (2006).

    Article  CAS  Google Scholar 

  28. Jiao, Y. et al. A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections. J. Neurosci. Methods 93, 149–162 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Rowitch, C.D. Stiles & J. Alberta for Olig2 antibody; W. Stallcup for NG2 antibody; F.A. Stephenson, R.J. Wenthold & O.P. Ottersen for NR1 antibody; and W. Andrews, M. Catsicas, I. Hans, K. Jessen, R. Mirsky, P. Mobbs, S. Rakic and W. Richardson for advice. Funded by the Wellcome Trust grant number 075232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnhildur Káradóttir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Káradóttir, R., Attwell, D. Combining patch-clamping of cells in brain slices with immunocytochemical labeling to define cell type and developmental stage. Nat Protoc 1, 1977–1986 (2006). https://doi.org/10.1038/nprot.2006.261

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.261

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing