Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene

Abstract

Collective magnetic properties are usually associated with the d or f electrons that carry the individual magnetic moments. A fully spin-polarized ground state based on π electrons has been predicted in half-filled flat-band organic materials, but has remained experimentally challenging to realize. Here we show that isolated tetracyano- p-quinodimethane molecules deposited on graphene epitaxially grown on Ru(0001) acquire charge from the substrate and develop a magnetic moment of 0.4 μB per molecule. The magnetic moment survives even when the molecules form into a dimer or a monolayer, with a value of 0.18 μB per molecule for the monolayer. The self-assembled molecular monolayer develops spatially extended spin-split electronic bands, and we visualized the ground-state spin alignment using spin-polarized scanning tunnelling microscopy. The observation of long-range magnetic order in an organic layer adsorbed on graphene paves the way for incorporating magnetic functionalities into graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adsorption geometry and charge transfer for individual TCNQ molecules on graphene on Ru(0001).
Figure 2: Spatial distribution of the molecular frontier orbitals for TCNQ adsorbed on graphene/Ru(0001).
Figure 3: Magnetic moment and Kondo resonance for individual TCNQ molecules.
Figure 4: Spatially extended intermolecular bands in a TCNQ monolayer adsorbed on graphene/Ru(0001).
Figure 5: Spin polarized measurements.

Similar content being viewed by others

References

  1. Coleman, L. B. et al. Superconducting fluctuations and the Peierls instability in an organic solid. Solid State Commun. 12, 1125–1132 (1973).

    Article  ADS  Google Scholar 

  2. Thomas, G. A. et al. Electrical conductivity of tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Phys. Rev. B 13, 5105–5110 (1976).

    Article  ADS  Google Scholar 

  3. Peierls, R. Surprises in Theoretical Physics (Princeton Univ. Press, 1979).

    Google Scholar 

  4. Miller, J. S., Epstein, A. J. & Reif, W. M. Molecular/organic ferromagnets. Science 240, 40–47 (1988).

    Article  ADS  Google Scholar 

  5. Jain, R. et al. High-temperature metal-organic magnets. Nature 445, 291–294 (2007).

    Article  ADS  Google Scholar 

  6. Manriquez, J. M. et al. A room-temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991).

    Article  ADS  Google Scholar 

  7. Novoselov, K. & Geim, A. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  8. Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115 (2012).

    Article  ADS  Google Scholar 

  9. Vázquez de Parga, A. L. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008).

    Article  ADS  Google Scholar 

  10. Borca, B. et al. Potential energy landscape for hot electrons in periodically nanostructured graphene. Phys. Rev. Lett. 105, 036804 (2010).

    Article  ADS  Google Scholar 

  11. Barja, S. et al. Self-organization of electron acceptor molecules on graphene. Chem. Commun. 46, 8198–8200 (2011).

    Article  Google Scholar 

  12. Mao, J. et al. Tunability of supramolecular Kagome lattices of magnetic Pthalocyanines using graphene-based moiré patterns as templates. J. Am. Chem. Soc. 131, 14136–14137 (2009).

    Article  Google Scholar 

  13. Tseng, T. C. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chem. 2, 374–379 (2010).

    Article  ADS  Google Scholar 

  14. Kresse, G. & Hafner, J. Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  15. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  16. Stradi, D. et al. Role of dispersion forces in the structure of monolayer graphene on Ru surfaces. Phys. Rev. Lett. 106, 186102 (2010).

    Article  ADS  Google Scholar 

  17. Stradi, D. et al. Electron localization in epitaxial graphene on Ru(0001) determined by moiré corrugation. Phys. Rev. B 85, 121404R (2012).

    Article  ADS  Google Scholar 

  18. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  ADS  Google Scholar 

  19. Repp, J. et al. Imaging Bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  ADS  Google Scholar 

  20. Kondo, J. Effect of ordinary scattering on exchange scattering from magnetic impurity in metals. Phys. Rev. 169, 437–440 (1968).

    Article  ADS  Google Scholar 

  21. Li, J. et al. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    Article  ADS  Google Scholar 

  22. Madhavan, V. et al. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  ADS  Google Scholar 

  23. Nagaoka, K. et al. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article  ADS  Google Scholar 

  24. Ternes, M., Heinrich, A. J. & Schneider, W-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys. Condens. Matter 21, 053001 (2009).

    Article  ADS  Google Scholar 

  25. Iancu, V., Deshpande, A. & Hla, S-W. Manipulation of the Kondo effect via two-dimensional molecular assembly. Phys. Rev. Lett. 97, 266603 (2008).

    Article  ADS  Google Scholar 

  26. Fernández Torrente, I. et al. Vibrational Kondo effect in pure organic charge transfer assemblies. Phys. Rev. Lett. 101, 217203 (2008).

    Article  ADS  Google Scholar 

  27. Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).

    Article  ADS  Google Scholar 

  28. Choi, T. et al. A single molecule Kondo switch: Multistability of tetracyanoethylene on Cu(111). Nano Lett. 10, 4175–4180 (2010).

    Article  ADS  Google Scholar 

  29. Komeda, T. et al. Observation and electric current control of a local spin in a single-molecule magnet. Nature Commun. 2, 217 (2011).

    Article  ADS  Google Scholar 

  30. Tasaki, H. Ferromagnetism in the Hubbard models with degenerate single electron ground states. Phys. Rev. Lett. 69, 1608–1611 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  31. Mielke, A. Ferromagnetism in single band Hubbard models with a partially flat band. Phys. Rev. Lett. 82, 4312–4315 (1999).

    Article  ADS  Google Scholar 

  32. Nagaoka, Y. Ferromagnetism in a narrow, half-filled band. Phys. Rev. 147, 392–405 (1966).

    Article  ADS  Google Scholar 

  33. Arita, R. et al. Gate induced band ferromagnetism in an organic polymer. Phys. Rev. Lett. 88, 127202 (2002).

    Article  ADS  Google Scholar 

  34. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the Ministerio de Educación y Ciencia through projects CONSOLIDER-INGENIO 2010 on Molecular Nanoscience, FIS2010-18847, FIS2010-15127 and CTQ2010-17006 and Comunidad de Madrid through the programme NANOBIOMAGNET S2009/MAT1726 is gratefully acknowledged. S.B. would like to acknowledge the FPU Grant AP-2007-001157. D.S. and M.G. would like to acknowledge the FPI-UAM programme.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were carried out primarily by M.G. and S.B., with important contributions by F.C. The calculations were performed mainly by D.S. with contributions by C.D. and M.A., and F.M. leading the theoretical approach. N.M. selected the specific chemical system. The data analysis was carried out by A.L.V.d.P., who also contributed to the writing of the manuscript. R.M. developed the physical idea and wrote the paper.

Corresponding author

Correspondence to Amadeo L. Vázquez de Parga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnica, M., Stradi, D., Barja, S. et al. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nature Phys 9, 368–374 (2013). https://doi.org/10.1038/nphys2610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing