Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efimov effect in quantum magnets

Abstract

Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus opens up new avenues for universal few-body physics in condensed matter systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical anisotropy for the two-magnon resonance.
Figure 2: Two lowest binding energies of three magnons for S = 1/2 near the two-magnon resonance.
Figure 3: Lowest binding energy of three magnons for S = 1 near the two-magnon resonance.
Figure 4: Critical exchange anisotropy for the two-magnon resonance in the presence of the spatial anisotropy.
Figure 5: Critical spatial anisotropy for the two-magnon resonance for S = 1/2in the presence of the frustration.

Similar content being viewed by others

References

  1. Fisher, M. E. Renormalization group theory: Its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  2. Efimov, V. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970).

    Article  ADS  Google Scholar 

  3. Nielsen, E., Fedorov, D. V., Jensen, A. S. & Garrido, E. The three-body problem with short-range interactions. Phys. Rep. 347, 373–459 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  4. Braaten, E. & Hammer, H-W. Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006).

    Article  ADS  Google Scholar 

  6. Date, M. & Motokawa, M. Spin-cluster resonance in CoCl2·2H2O. Phys. Rev. Lett. 16, 1111–1114 (1966).

    Article  ADS  Google Scholar 

  7. Date, M. & Motokawa, M. Spin-cluster resonance in the Ising spin system. J. Phys. Soc. Jpn 24, 41–50 (1968).

    Article  ADS  Google Scholar 

  8. Torrance, J. B. Jr & Tinkham, M. Magnon bound states in anisotropic linear chains. Phys. Rev. 187, 587–594 (1969).

    Article  ADS  Google Scholar 

  9. Torrance, J. B. Jr & Tinkham, M. Excitation of multiple-magnon bound states in CoCl2·2H2O. Phys. Rev. 187, 595–606 (1969).

    Article  ADS  Google Scholar 

  10. Nicoli, D. F. & Tinkham, M. Far-infrared laser spectroscopy of the linear Ising system CoCl2·2H2O. Phys. Rev. B 9, 3126–3140 (1974).

    Article  ADS  Google Scholar 

  11. Van Vlimmeren, Q. A. G. & de Jonge, W. J. M. Spin-cluster resonance in the pseudo-one-dimensional canted Ising antiferromagnet RbFeCl3·2H2O. Phys. Rev. B 19, 1503–1514 (1979).

    Article  ADS  Google Scholar 

  12. Van Vlimmeren, Q. A. G. et al. Spin-cluster excitations in RbFeCl3·2H2O. Phys. Rev. B 21, 3005–3014 (1980).

    Article  ADS  Google Scholar 

  13. Hoogerbeets, R., van Duyneveldt, A. J., Phaff, A. C., Swuste, C. H. W. & de Jonge, W. J. M. Evidence for magnon bound-state excitations in the quantum chain system (C6H11NH3)CuCl3 . J. Phys. C 17, 2595–2608 (1984).

    Article  ADS  Google Scholar 

  14. Nijhof, E. J., van der Vlist, H., Puértolas, J. A. & Gerritsma, G. J. Magnetism in the linear-chain antiferromagnet RbCoCl3·2H2O studied by dynamic susceptibility and electron-spin resonance. Phys. Rev. B 33, 4854–4867 (1986).

    Article  ADS  Google Scholar 

  15. Bosch, L. A., Lauwers, G. J. P. M., Kopinga, K., van der Steen, C. & de Jonge, W. J. M. The far-infrared magnetic excitation spectrum of CoCl2(NC5H5)2 . J. Phys. C 20, 609–627 (1987).

    Article  ADS  Google Scholar 

  16. Rubins, R. S., Black, T. D., Sohn, A. & Drumheller, J. E. Spin-cluster-resonance spectra in an S = 2 one-dimensional Ising ferromagnet. Phys. Rev. B 49, 15366–15369 (1994).

    Article  ADS  Google Scholar 

  17. Perkins, J. D. et al. Infrared optical excitations in La2NiO4 . Phys. Rev. B 52, R9863–R9866 (1995).

    Article  ADS  Google Scholar 

  18. Garrett, A. W., Nagler, S. E., Tennant, D. A., Sales, B. C. & Barnes, T. Magnetic excitations in the S = 1/2 alternating chain compound (VO)2P2O7 . Phys. Rev. Lett. 79, 745–748 (1997).

    Article  ADS  Google Scholar 

  19. Orendáč, M. et al. Single-ion bound states in S = 1 Heisenberg antiferromagnetic chains with planar anisotropy and subcritical exchange coupling. Phys. Rev. B 60, 4170–4175 (1999).

    Article  ADS  Google Scholar 

  20. Katsumata, K. et al. Single-ion magnon bound states in an antiferromagnet with strong uniaxial anisotropy. Phys. Rev. B 61, 11632–11636 (2000).

    Article  ADS  Google Scholar 

  21. Tennant, D. A. et al. Neutron scattering study of two-magnon states in the quantum magnet copper nitrate. Phys. Rev. B 67, 054414 (2003).

    Article  ADS  Google Scholar 

  22. Zvyagin, S. A. et al. Magnetic excitations in the spin-1 anisotropic Heisenberg antiferromagnetic chain system NiCl2–4SC(NH2)2 . Phys. Rev. Lett. 98, 047205 (2007).

    Article  ADS  Google Scholar 

  23. Psaroudaki, C. et al. Magnetic excitations in the spin-1 anisotropic antiferromagnet NiCl2–4SC(NH2)2 . Phys. Rev. B 85, 014412 (2012).

    Article  ADS  Google Scholar 

  24. Giamarchi, T., Rüegg, C. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nature Phys. 4, 198–204 (2008).

    Article  ADS  Google Scholar 

  25. Holstein, T. & Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940).

    Article  ADS  Google Scholar 

  26. Watson, G. N. Three triple integrals. Q. J. Math. 10, 266–276 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  27. Hammer, H-W. & Platter, L. Universal properties of the four-body system with large scattering length. Eur. Phys. J. A 32, 113–120 (2007).

    Article  ADS  Google Scholar 

  28. Von Stecher, J., D’Incao, J. P. & Greene, C. H. Signatures of universal four-body phenomena and their relation to the Efimov effect. Nature Phys. 5, 417–421 (2009).

    Article  ADS  Google Scholar 

  29. Blundell, S. J. & Pratt, F. L. Organic and molecular magnets. J. Phys. Condens. Matter 16, R771–R828 (2004).

    Article  ADS  Google Scholar 

  30. Koch, R., Waldmann, O., Müller, P., Reimann, U. & Saalfrank, R. W. Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares. Phys. Rev. B 67, 094407 (2003).

    Article  ADS  Google Scholar 

  31. Kawamoto, T., Tokumoto, M., Sakamoto, H. & Mizoguchi, K. Theoretical study of pressure effect on TDAE–C60 . J. Phys. Soc. Jpn 70, 1892–1895 (2001).

    Article  ADS  Google Scholar 

  32. Landee, C. P. & Willett, R. D. Tetramethylammonium copper chloride and tris (trimethylammonium) copper chloride: S = 1/2 Heisenberg one-dimensional ferromagnets. Phys. Rev. Lett. 43, 463–466 (1979).

    Article  ADS  Google Scholar 

  33. Takahashi, M. et al. Discovery of a quasi-1D organic ferromagnet, p-NPNN. Phys. Rev. Lett. 67, 746–748 (1991).

    Article  ADS  Google Scholar 

  34. Feldkemper, S., Weber, W., Schulenburg, J. & Richter, J. Ferromagnetic coupling in nonmetallic Cu2+ compounds. Phys. Rev. B 52, 313–323 (1995).

    Article  ADS  Google Scholar 

  35. Manaka, H., Koide, T., Shidara, T. & Yamada, I. Observation of polarization-dependent x-ray absorption spectra arising from Cu 3d–F 2p hybridization in the two-dimensional ferromagnets A2CuF4 (A = K, Cs). Phys. Rev. B 68, 184412 (2003).

    Article  ADS  Google Scholar 

  36. Shimizu, K. et al. Ferromagnetic ordering of S = 1/2 Heisenberg ferromagnetic chains in organic magnet β−BBDTA·GaBr4 . Phys. Rev. B 74, 172413 (2006).

    Article  ADS  Google Scholar 

  37. Sugano, T., Blundell, S. J., Lancaster, T., Pratt, F. L. & Mori, H. Magnetic order in the purely organic quasi-one-dimensional ferromagnet 2-benzimidazolyl nitronyl nitroxide. Phys. Rev. B 82, 180401 (2010).

    Article  ADS  Google Scholar 

  38. Pradeep, T. Advances in Physical Chemistry (Allied Publishers, 1999).

    Google Scholar 

  39. Hase, M. et al. Magnetic properties of Rb2Cu2Mo3O12 including a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor exchange interactions. Phys. Rev. B 70, 104426 (2004).

    Article  ADS  Google Scholar 

  40. Enderle, M. et al. Quantum helimagnetism of the frustrated spin-1/2 chain LiCuVO4 . Europhys. Lett. 70, 237–243 (2005).

    Article  ADS  Google Scholar 

  41. Dmitriev, D. V. & Krivnov, V. Ya. Multimagnon bound states in an easy-axis frustrated ferromagnetic spin chain. Phys. Rev. B 79, 054421 (2009).

    Article  ADS  Google Scholar 

  42. Bahurmuz, A. A. & Loly, P. D. The complete two-magnon spectrum of the ferromagnetic Heisenberg chain including NNN interactions. J. Phys. C 19, 2241–2252 (1986).

    Article  ADS  Google Scholar 

  43. Chubukov, A. V. Chiral, nematic, and dimer states in quantum spin chains. Phys. Rev. B 44, 4693–4696 (1991).

    Article  ADS  Google Scholar 

  44. Cabra, D. C., Honecker, A. & Pujol, P. Magnetic properties of zig-zag ladders. Eur. Phys. J. B 13, 55–73 (2000).

    Article  ADS  Google Scholar 

  45. Dmitriev, D. V. & Krivnov, V. Ya. Frustrated ferromagnetic spin-1/2 chain in a magnetic field. Phys. Rev. B 73, 024402 (2006).

    Article  ADS  Google Scholar 

  46. Kuzian, R. O. & Drechsler, S-L. Exact one- and two-particle excitation spectra of acute-angle helimagnets above their saturation magnetic field. Phys. Rev. B 75, 024401 (2007).

    Article  ADS  Google Scholar 

  47. Kecke, L., Momoi, T. & Furusaki, A. Multimagnon bound states in the frustrated ferromagnetic one-dimensional chain. Phys. Rev. B 76, 060407 (2007).

    Article  ADS  Google Scholar 

  48. Goodenough, J. B. Magnetism and the Chemical Bond (Wiley, 1963).

    Google Scholar 

  49. Nath, R., Tsirlin, A. A., Rosner, H. & Geibel, C. Magnetic properties of BaCdVO(PO4)2: A strongly frustrated spin-1/2 square lattice close to the quantum critical regime. Phys. Rev. B 78, 064422 (2008).

    Article  ADS  Google Scholar 

  50. Wortis, M. Bound states of two spin waves in the Heisenberg ferromagnet. Phys. Rev. 132, 85–97 (1963).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by a LANL Oppenheimer Fellowship and the US DOE contract No. DE-AC52-06NA25396 through the LDRD program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Yusuke Nishida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, Y., Kato, Y. & Batista, C. Efimov effect in quantum magnets. Nature Phys 9, 93–97 (2013). https://doi.org/10.1038/nphys2523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing