Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two Ising-like magnetic excitations in a single-layer cuprate superconductor

Abstract

There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. According to one distinct theoretical proposal, on decreasing the hole-carrier concentration a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the ‘pseudogap’ temperature T*(T*>Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds which should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+δ the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points towards a unifying picture of magnetism in the cuprates that will probably require a multi-band description.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of two excitation branches.
Figure 2: Doping and momentum dependence of intensity.
Figure 3: Temperature dependence.
Figure 4: Magnetic origin verified by spin-polarized measurements.
Figure 5: Mixing between pseudogap excitations and antiferromagnetic spin fluctuations.

Similar content being viewed by others

References

  1. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article  ADS  Google Scholar 

  2. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  3. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  ADS  Google Scholar 

  4. Zaanen, J. in 100 Years of Superconductivity (eds Rogalla, H. & Kes, P. H.) (Taylor & Francis, 2012).

    Google Scholar 

  5. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high- Tc superconductor. Nature 416, 610–613 (2002).

    Article  ADS  Google Scholar 

  6. Fauqué, B. et al. Magnetic order in the pseudogap phase of high- Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006).

    Article  ADS  Google Scholar 

  7. Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ . Nature 455, 372–375 (2008).

    Article  ADS  Google Scholar 

  8. Li, Y. et al. Magnetic order in the pseudogap phase of HgBa2CuO4+δ studied by spin-polarized neutron diffraction. Phys. Rev. B 84, 224508 (2011).

    Article  ADS  Google Scholar 

  9. Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: Evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    Article  ADS  Google Scholar 

  10. He, R-H. et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 331, 1579–1583 (2011).

    Article  ADS  Google Scholar 

  11. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high- Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

  12. Birgeneau, R. J. et al. Antiferromagnetic spin correlations in insulating, metallic, and superconducting La2−xSrxCuO4 . Phys. Rev. B 38, 6614–6623 (1988).

    Article  ADS  Google Scholar 

  13. Rossat-Mignot, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185–189, 86–92 (1991).

    Article  ADS  Google Scholar 

  14. Cheong, S-W. et al. Incommensurate magnetic fluctuations in La2−xSrxCuO4 . Phys. Rev. Lett. 67, 1791–1794 (1991).

    Article  ADS  Google Scholar 

  15. Mook, H. A., Yethiraj, M., Aeppli, G., Mason, T. E. & Armstrong, T. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7 . Phys. Rev. Lett. 70, 3490–3493 (1993).

    Article  ADS  Google Scholar 

  16. Bourges, P., Regnault, L. P., Sidis, Y. & Vettier, C. Inelastic-neutron-scattering study of antiferromagnetic fluctuations in YBa2Cu3O6.97 . Phys. Rev. B 53, 876–885 (1996).

    Article  ADS  Google Scholar 

  17. Fong, H. F., Keimer, B., Reznik, D., Milius, D. L. & Aksay, I. A. Polarized and unpolarized neutron-scattering study of the dynamical spin susceptibility of YBa2Cu3O7 . Phys. Rev. B 54, 6708–6720 (1996).

    Article  ADS  Google Scholar 

  18. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  19. Birgeneau, R. J., Stock, C., Tranquada, J. M. & Yamada, K. Magnetic neutron scattering in hole-doped cuprate superconductors. J. Phys. Soc. Jpn 75, 111003 (2006).

    Article  ADS  Google Scholar 

  20. Haug, D. et al. Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x . New J. Phys. 12, 105006 (2010).

    Article  ADS  Google Scholar 

  21. Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nature Phys. 5, 873–875 (2009).

    Article  ADS  Google Scholar 

  22. Demler, E. & Zhang, S-C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998).

    Article  ADS  Google Scholar 

  23. Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nature Phys. 5, 217–221 (2009).

    Article  ADS  Google Scholar 

  24. Li, Y. et al. Hidden magnetic excitation in the pseudogap phase of a high- Tc superconductor. Nature 468, 283–285 (2010).

    Article  ADS  Google Scholar 

  25. Varma, C. M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 73, 155113 (2006).

    Article  ADS  Google Scholar 

  26. Varma, C. M. Mind the pseudogap. Nature 468, 184–185 (2010).

    Article  ADS  Google Scholar 

  27. Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004).

    Article  ADS  Google Scholar 

  28. Barišic`, N. et al. Demonstrating the model nature of the high-temperature superconductor HgBa2CuO4+δ . Phys. Rev. B 78, 054518 (2008).

    Article  ADS  Google Scholar 

  29. Zhao, X. et al. Crystal growth and characterization of the model high-temperature superconductor HgBa2CuO4+δ . Adv. Mater 18, 3243–3247 (2006).

    Article  Google Scholar 

  30. Yu, G. et al. Magnetic resonance in the model high-temperature superconductor HgBa2CuO4+δ . Phys. Rev. B 81, 064518 (2010).

    Article  ADS  Google Scholar 

  31. Li, Y., Egetenmeyer, N., Gavilano, J. L., Barišic`, N. & Greven, M. Magnetic vortex lattice in HgBa2CuO4+δ observed by small-angle neutron scattering. Phys. Rev. B 83, 054507 (2011).

    Article  ADS  Google Scholar 

  32. Ikeda, H. & Hutchings, M. T. Spin wave excitations in a two-dimensional Ising-like antiferromagnet, Rb2CoF4 . J. Phys. C 11, L529 (1978).

    Article  ADS  Google Scholar 

  33. He, Y. & Varma, C. M. Collective modes in the loop ordered phase of cuprate superconductors. Phys. Rev. Lett. 106, 147001 (2011).

    Article  ADS  Google Scholar 

  34. Balédent, V. et al. Two-dimensional orbital-like magnetic order in the high-temperature La2−xSrxCuO4 superconductor. Phys. Rev. Lett. 105, 027004 (2010).

    Article  ADS  Google Scholar 

  35. Martin, I., Kaneshita, E., Bishop, A. R., McQueeney, R. J. & Yu, Z. G. Vibrational edge modes in intrinsically heterogeneous doped transition metal oxides. Phys. Rev. B 70, 224514 (2004).

    Article  ADS  Google Scholar 

  36. Tahir-Kheli, J. & Goddard, W. A. III Origin of the pseudogap in high-temperature cuprate superconductors. J. Phys. Chem. Lett. 2, 2326–2330 (2011).

    Article  Google Scholar 

  37. Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007).

    Article  ADS  Google Scholar 

  38. Aji, V., Shekhter, A. & Varma, C. M. Theory of the coupling of quantum-critical fluctuations to fermions and d-wave superconductivity in cuprates. Phys. Rev. B 81, 064515 (2010).

    Article  ADS  Google Scholar 

  39. Abanov, Ar., Chubukov, A. V. & Schmalian, J. Quantum-critical theory of the spin-fermion model and its application to cuprates: Normal state analysis. Adv. Phys. 52, 119–218 (2003).

    Article  ADS  Google Scholar 

  40. Moriya, T. & Ueda, K. Antiferromagnetic spin fluctuation and superconductivity. Rep. Prog. Phys. 66, 1299–1341 (2003).

    Article  ADS  Google Scholar 

  41. Barzykin, V. & Pines, D. Universal behaviour and the two-component character of magnetically underdoped cuprate superconductors. Adv. Phys. 58, 1–65 (2009).

    Article  ADS  Google Scholar 

  42. Pailhès, S. et al. Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85 . Phys. Rev. Lett. 93, 167001 (2004).

    Article  ADS  Google Scholar 

  43. Pailhès, S. et al. Doping dependence of bilayer resonant spin excitations in (Y,Ca)Ba2Cu3O6+x . Phys. Rev. Lett. 96, 257001 (2006).

    Article  ADS  Google Scholar 

  44. Balédent, V. et al. Evidence for competing magnetic instabilities in underdoped YBa2Cu3O6+x . Phys. Rev. B 83, 104504 (2011).

    Article  ADS  Google Scholar 

  45. Tsuei, C. C., Gupta, A., Trafas, G. & Mitzi, D. Superconducting mercury-based cuprate films with a zero-resistance transition temperature of 124 K. Science 263, 1259–1261 (1994).

    Article  ADS  Google Scholar 

  46. Reznik, D. et al. Dispersion of magnetic excitations in optimally doped superconducting YBa2Cu3O6.95 . Phys. Rev. Lett. 93, 207003 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. M. Varma, A. R. Bishop and B. Keimer for stimulating discussions. This research was supported by the US Department of Energy, Office of Basic Energy Sciences. X.Z. acknowledges support by the National Natural Science Foundation, China. Y. Li acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.G., P.B. and Y.L. planned the project. Y.L., G.Y., M.K.C., V.B. and Yangmu L. performed the neutron scattering experiments. Y.L., N.B. and X.Z. characterized and prepared the samples. P.S., R.A.M., K.H., Y.S. and P.B. were local contacts for the neutron scattering experiments. Y.L. and M.G. analysed the data and wrote the manuscript with input from all coauthors.

Corresponding author

Correspondence to M. Greven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yu, G., Chan, M. et al. Two Ising-like magnetic excitations in a single-layer cuprate superconductor. Nature Phys 8, 404–410 (2012). https://doi.org/10.1038/nphys2271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2271

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing