Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Physics at its coolest

This article has been updated

In the quest for ever-lower temperatures, making new discoveries and overcoming technical challenges go hand in hand — and push the limits of thermometry standardization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lowest temperatures produced over the years.
Figure 2: Nuclear magnetic resonance (NMR) spectra of lithium during the final stages of demagnetization cooling from around 30 μK (at 2,500 μT) to 100 nK (at 0 T).

Change history

  • 19 January 2016

    In the Commentary 'Physics at its coolest' (Nature Physics 12, 11–14; 2016), the references in the Fig. 1 caption were incorrect. The data in Fig. 1 was compiled from refs 12,34,37. In addition, a citation to ref. 36 was omitted from the last line of the Commentary. These errors have been corrected in the online version 19 January 2016.

References

  1. van Delft, D. Freezing physics: Heike Kamerlingh Onnes and the Quest for Cold (Chicago Univ. Press, 2007).

    Google Scholar 

  2. Moldover, M. R., Tew, W. L. & Yoon, H. W. Nature Phys. 12, 7–11 (2016).

    Article  ADS  Google Scholar 

  3. Kapitza, P. Nature 141, 74 (1938).

    Article  ADS  Google Scholar 

  4. Allen, J. F. & Misener, A. D. Nature 142, 643–644 (1938).

    Article  ADS  Google Scholar 

  5. Das, P., Bruyn de Ouboter, R. & Taconis, K. W. in Low Temperature Physics LT9 1253–1255 (Springer, 1965).

    Book  Google Scholar 

  6. Cousins, D. J. et al. J. Low Temp. Phys. 114, 547–570 (1999).

    Article  ADS  Google Scholar 

  7. Uhlig, K. Cryogenics 42, 73–77 (2002).

    Article  ADS  Google Scholar 

  8. Giauque, W. F. & MacDougall, D. P. Phys. Rev. 43, 768 (1933).

    Article  ADS  Google Scholar 

  9. Berglund, P. M. et al. Cryogenics 12, 297–299 (1972).

    Article  ADS  Google Scholar 

  10. Wendler, W. et al. J. Low Temp. Phys. 111, 99–118 (1998).

    Article  ADS  Google Scholar 

  11. Pickett, G. R. Physica B 280, 467–473 (2000).

    Article  ADS  Google Scholar 

  12. Oja, A. S. & Lounasmaa, O. V. Rev. Mod. Phys. 69, 1–136 (1997).

    Article  ADS  Google Scholar 

  13. Tuoriniemi, J. & Juntunen, K. J. Low Temp. Phys. 135, 513–543 (2004).

    Article  ADS  Google Scholar 

  14. Juntunen, K. & Tuoriniemi, J. J. Low Temp. Phys. 141, 235–293 (2005).

    Article  ADS  Google Scholar 

  15. Rysti, J. et al. Phys. Rev. B 85, 134529 (2012).

    Article  ADS  Google Scholar 

  16. Ferrier-Barbut, I. et al. Science 345, 1035–1038 (2014).

    Article  ADS  Google Scholar 

  17. Tuoriniemi, J. et al. J. Low Temp. Phys. 129, 531–545 (2002).

    Article  ADS  Google Scholar 

  18. Osheroff, D. D. et al. Phys. Rev. Lett. 28, 885–888 (1972).

    Article  ADS  Google Scholar 

  19. Sebedash, A. P. et al. J. Low Temp. Phys. 148, 725–729 (2007).

    Article  ADS  Google Scholar 

  20. Halperin, W. P. et al. J. Low Temp. Phys. 31, 617–698 (1978).

    Article  ADS  Google Scholar 

  21. Preston-Thomas, H. Metrologia 27, 3–10 (1990).

    Article  ADS  Google Scholar 

  22. Rusby, R. L. et al. J. Low Temp. Phys. 126, 633–642 (2002).

    Article  ADS  Google Scholar 

  23. Appendix to Recommendation C 1, 89th Meeting of the CIPM (2000); www.bipm.org/utils/en/pdf/PLTS-2000.pdf

  24. Pobell, F. Matter and Methods at Low Temperatures (Springer, 2007).

    Book  Google Scholar 

  25. Tuoriniemi, J. et al. Z. Phys. B 102, 433–438 (1997).

    Article  ADS  Google Scholar 

  26. Lefmann, K. et al. Z. Phys. B 102, 439–447 (1997).

    Article  ADS  Google Scholar 

  27. Berglund, P. L. et al. J. Low Temp. Phys. 6, 357–383 (1972).

    Article  ADS  Google Scholar 

  28. Hakonen, P. et al. J. Low Temp. Phys. 135, 823–838 (2004).

    Article  ADS  Google Scholar 

  29. Casey, A. et al. J. Low Temp. Phys. 175, 764–775 (2014).

    ADS  Google Scholar 

  30. Rothfuss, D. et al. J. Low Temp. Phys. 175, 776–783 (2014).

    Article  ADS  Google Scholar 

  31. Giazotto, P. et al. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  ADS  Google Scholar 

  32. Pekola, J. P. Nature Phys. 11, 118–123 (2015).

    Article  ADS  Google Scholar 

  33. Phillips, W. D. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  Google Scholar 

  34. Medley, P. et al. Phys. Rev. Lett. 106, 195301 (2011).

    Article  ADS  Google Scholar 

  35. Olf, R. et al. Nature Phys. 11, 720–723 (2015).

    Article  ADS  Google Scholar 

  36. Leanhardt, A. E. et al. Science 301, 1513–1515 (2003).

    Article  ADS  Google Scholar 

  37. Knuuttila, T. A. et al. J. Low Temp. Phys. 123, 65–102 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Tuoriniemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuoriniemi, J. Physics at its coolest. Nature Phys 12, 11–14 (2016). https://doi.org/10.1038/nphys3616

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing