Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature quantum microwave emitters based on spin defects in silicon carbide

Abstract

Atomic-scale defects in silicon carbide are always present and usually limit the performance of this material in high-power electronics and radiofrequency communication. Here, we reveal a family of homotypic silicon vacancy defects in silicon carbide exhibiting attractive spin properties. In particular, the defect spins can be initialized and read out even at room temperature by means of optically detected magnetic resonance, suggesting appealing applications such as spin qubits and spin magnetometers. Using this technique we detect two-quantum spin resonances, providing strong evidence for the S = 3/2 ground state of the silicon vacancy defects. The optically induced population inversion of these high-spin ground states leads to stimulated microwave emission, which we directly observed in our silicon carbide crystals. The analysis based on the experimentally obtained parameters shows that this property can be used to implement solid-state masers and extraordinarily sensitive radiofrequency amplifiers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for VSi defects and corresponding Jablonski diagram.
Figure 2: ODMR fingerprint of VSi defects in SiC.
Figure 3: Microwave power dependence of the VSi(V2) ODMR spectrum.
Figure 4: ODMR spectra obtained under optical excitation with the energy of the VSi(V3) ZPL transition E3 = 1.368 eV.
Figure 5: Room-temperature population inversion of the VSi defects.

Similar content being viewed by others

References

  1. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  2. Santori, C., Fattal, D. & Yamamoto, Y. Single-Photon Devices and Applications (Wiley-VCH, 2010).

    Google Scholar 

  3. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007).

    Article  ADS  Google Scholar 

  4. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).

    Article  ADS  Google Scholar 

  5. Bozyigit, D. et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors. Nature Phys. 7, 154–158 (2010).

    Article  ADS  Google Scholar 

  6. Clauss, R. C. & Shell, J. S. Low-Noise Systems in the Deep Space Network (Jet Propulsion Laboratory California Institute of Technology, 2008).

  7. Yarmus, L., Rosenthal, J. & Chopp, M. EPR of triplet excitons in tetracene crystals: Spin polarization and the role of singlet exciton fission. Chem. Phys. Lett. 16, 477–481 (1972).

    Article  ADS  Google Scholar 

  8. Agostini, G., Corvaja, C., Giacometti, G. & Pasimeni, L. Optical, zero-field ODMR and EPR studies of the triplet states from singlet fission in biphenyl-TCNQ and biphenyl-tetrafluoro-TCNQ charge-transfer crystals. Chem. Phys. 173, 177–186 (1993).

    Article  Google Scholar 

  9. Koptyug, I. V., Goloshevsky, A. G., Zavarine, I. S., Turro, N. J. & Krusic, P. J. CIDEP studies of fullerene-derived radical adducts. J. Phys. Chem. A 104, 5726–5731 (2000).

    Article  Google Scholar 

  10. Oxborrow, M., Breeze, J. D. & Alford, N. M. Room-temperature solid-state maser. Nature 488, 353–356 (2012).

    Article  ADS  Google Scholar 

  11. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: A review. Phys. Status Solidi a 203, 3207–3225 (2006).

    Article  ADS  Google Scholar 

  12. Harrison, J., Sellars, M. J. & Manson, N. B. Optical spin polarization of the N–V centre in diamond. J. Lumin. 107, 245–248 (2004).

    Article  Google Scholar 

  13. Baranov, P. et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

    Article  ADS  Google Scholar 

  14. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  ADS  Google Scholar 

  15. Riedel, D. et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

    Article  ADS  Google Scholar 

  16. Fuchs, F. et al. Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013).

    Article  Google Scholar 

  17. Soltamov, V., Soltamova, A., Baranov, P. & Proskuryakov, I. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

    Article  ADS  Google Scholar 

  18. Vainer, V. S. & Il’in, V. A. Electron spin resonance of exchange-coupled vacancy pairs in hexagonal silicon carbide. Sov. Phys. Solid State 23, 2126–2133 (1981).

    Google Scholar 

  19. Sörman, E. et al. Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B 61, 2613–2620 (2000).

    Article  ADS  Google Scholar 

  20. Wagner, M. et al. Electronic structure of the neutral silicon vacancy in 4H and 6H SiC. Phys. Rev. B 62, 16555–16560 (2000).

    Article  ADS  Google Scholar 

  21. Orlinski, S., Schmidt, J., Mokhov, E. & Baranov, P. Silicon and carbon vacancies in neutron-irradiated SiC: A high-field electron paramagnetic resonance study. Phys. Rev. B 67, 125207 (2003).

    Article  ADS  Google Scholar 

  22. Wimbauer, T., Meyer, B., Hofstaetter, A., Scharmann, A. & Overhof, H. Negatively charged Si vacancy in 4H SiC: A comparison between theory and experiment. Phys. Rev. B 56, 7384–7388 (1997).

    Article  ADS  Google Scholar 

  23. Mizuochi, N. et al. Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C3v symmetry in n-type 4H-SiC. Phys. Rev. B 66, 235202 (2002).

    Article  ADS  Google Scholar 

  24. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

    Article  ADS  Google Scholar 

  25. Nizovtsev, A. P. et al. Spin-selective low temperature spectroscopy on single molecules with a triplet–triplet optical transition: Application to the NV defect centre in diamond. Opt. Spectrosc. 94, 848–858 (2003).

    Article  ADS  Google Scholar 

  26. von Bardeleben, H., Cantin, J., Vickridge, I. & Battistig, G. Proton-implantation-induced defects in n-type 6H- and 4H-SiC: An electron paramagnetic resonance study. Phys. Rev. B 62, 10126–10134 (2000).

    Article  ADS  Google Scholar 

  27. De Ceuster, J., Goovaerts, E., Bouwen, A. & Dyakonov, V. Recombination of triplet excitons and polaron pairs in a derived paraphenylene vinylene pentamer. Phys. Rev. B 68, 125202 (2003).

    Article  ADS  Google Scholar 

  28. Baranov, P. G., Romanov, N. G., Khramtsov, V. A. & Vikhnin, V. S. Oriented silver chloride microcrystals and nanocrystals embedded in a crystalline KCl matrix, as studied by means of electron paramagnetic resonance and optically detected magnetic resonance. J. Phys. Condens. Matter 13, 2651–2669 (2001).

    Article  ADS  Google Scholar 

  29. Hughes, V. & Geiger, J. Two-quantum transitions in the microwave Zeeman spectrum of atomic oxygen. Phys. Rev. 99, 1842–1845 (1955).

    Article  ADS  Google Scholar 

  30. Fuchs, G. et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101, 117601 (2008).

    Article  ADS  Google Scholar 

  31. Kornienko, L. S. & Shteinshleiger, V. B. Quantum amplifiers and their application in space research. Sov. Phys. Usp. 21, 852–864 (1978).

    Article  ADS  Google Scholar 

  32. Baranov, P. G. et al. EPR identification of the triplet ground state and photoinduced population inversion for a Si–C divacancy in silicon carbide. J. Exp. Theor. Phys. Lett. 82, 441–443 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology, Germany as well as by the Ministry of Education and Science, Russia under agreements No. 8017, No. 8568, grant of the President 14.122.13.6053-MK, Russia, the Programs of the Russian Academy of Sciences: ‘Spintronics’ and ‘Fundamentals of nanostructure and nanomaterial technologies’ and by the RFBR No. 13-02-00821. We thank V. A. Ilyin and E. N. Mokhov for fruitful discussions as well as M. Heiber for careful reading of our manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

H.K., V.A.S., D.R., S.V. and F.F. conducted the experiments; P.G.B., V.A.S., D.R. and G.V.A. analysed the experimental data; A.S., P.G.B., V.D. and G.V.A. conceived the experiments; G.V.A. wrote the main manuscript text; V.D. critically reviewed and corrected the manuscript; all authors discussed the results.

Corresponding author

Correspondence to V. Dyakonov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, H., Soltamov, V., Riedel, D. et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nature Phys 10, 157–162 (2014). https://doi.org/10.1038/nphys2826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing