Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ab initio quantum-enhanced optical phase estimation using real-time feedback control

Abstract

Optical phase estimation is a vital measurement strategy that is used to perform accurate measurements of various physical quantities including length, velocity and displacements1,2. The precision of such measurements can be greatly enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems3,4,5,6,7,8. Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown9,10,11,12. Here, we report on the realization of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of squeezing-enhanced phase estimation.
Figure 2: Working principle of the Bayesian feedback scheme.
Figure 3: Simplified experimental layout.
Figure 4: Illustration of a single measurement sequence.
Figure 5: Estimation variance results.

Similar content being viewed by others

References

  1. Caves, C. M. Quantum mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  3. Nagata, T., Okamoto, R., O'Brien, J., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726 (2007).

    Article  ADS  Google Scholar 

  4. Banaszek, K., Demkowicz-Dobrzanski, R. & Walmsley, I. A. Quantum states made to measure. Nature Photon. 3, 673–676 (2009).

    Article  ADS  Google Scholar 

  5. Kacprowicz, M., Demkowicz-Dobrzanski, R., Wasilewski, W., Banaszek, K. & Walmsley, I. A. Experimental quantum-enhanced estimation of a lossy phase shift. Nature Photon. 4, 357–360 (2010).

    Article  ADS  Google Scholar 

  6. The LIGO Scientific Collaboration. tA gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

  7. Yonezawa, H. et al. Quantum-enhanced optical phase tracking. Science 337, 1514–1517 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  8. Hoff, U. B. et al. Quantum-enhanced micromechanical displacement sensitivity. Opt. Lett. 38, 1413–1415 (2012).

    Article  ADS  Google Scholar 

  9. Wiseman, H. M. Adaptive phase measurement of optical modes: going beyond the marginal Q distribution. Phys. Rev. Lett. 75, 4587–4590 (1995).

    Article  ADS  Google Scholar 

  10. Berry, D. W. & Wiseman, H. M. Adaptive phase measurements for narrowband squeezed beams. Phys. Rev. A 73, 063824 (2006).

    Article  ADS  Google Scholar 

  11. Kolodynski, J. & Demkowicz-Dobrzanski, R. Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82, 053804 (2010).

    Article  ADS  Google Scholar 

  12. Xiang, G. Y., Higgins, B. L., Berry, D. W., Wiseman, H. M. & Pryde, G. J. Entanglement-enhanced measurement of a completely unknown optical phase. Nature Photon. 5, 43–47 (2010).

    Article  ADS  Google Scholar 

  13. Barnett, S. M. & Pegg, D. T. Phase in quantum optics. J. Phys. A 19, 3849–3862 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  14. Hradil, Z. & Rehacek, J. Quantum interference and Fisher information. Phys. Lett. A 334, 267–272 (2005).

    Article  ADS  Google Scholar 

  15. Escher, B. M., de Matos Filho, R. L. & Davidovich, L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nature Phys. 7, 406–411 (2011).

    Article  ADS  Google Scholar 

  16. Cramer, H. Mathematical Methods of Statistics (Princeton Univ. Press, 1946).

    MATH  Google Scholar 

  17. Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  18. D'Ariano, G. M., Paris, M. G. A. & Seno, R. Feedback-assisted homodyne detection of phase shifts. Phys. Rev. A 54, 4495–4504 (1996).

    Article  ADS  Google Scholar 

  19. Armen, M. A., Au, J. K., Stockton, J. K., Doherty, A. C. & Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002).

    Article  ADS  Google Scholar 

  20. Wheatley, T. A. et al. Adaptive optical phase estimation using time-symmetric quantum smoothing. Phys. Rev. Lett. 104, 093601 (2010).

    Article  ADS  Google Scholar 

  21. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  22. Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 73, 033821 (2006).

    Article  ADS  Google Scholar 

  23. Olivares, S. & Paris, M. G. A. Bayesian estimation in homodyne interferometry. J. Phys. B 42, 055506 (2009).

    Article  ADS  Google Scholar 

  24. Barndorff-Nielsen, O. E. & Gill, R. D. Fisher information in quantum statistics. J. Phys. A 33, 4481–4490 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  25. Aspachs, M., Calsamiglia, J., Munoz-Tapia, R. & Bagan, E. Phase estimation for thermal Gaussian states. Phys. Rev. A 79, 033834 (2009).

    Article  ADS  Google Scholar 

  26. Berni, A. Quantum Metrology With Squeezed Light. Master's thesis (Università degli Studi di Milano, 2011).

  27. Eberle, T., Händchen, V. & Schnabel, R. Stable control of 10 dB two-mode squeezed vacuum states of light. Opt. Express 21, 11546–11553 (2013).

    Article  ADS  Google Scholar 

  28. Carlton, P. M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl Acad. Sci. USA 107, 16016–16022 (2010).

    Article  ADS  Google Scholar 

  29. Pototschnig, M. et al. Controlling the phase of a light beam with a single molecule. Phys. Rev. Lett. 107, 063001 (2011).

    Article  ADS  Google Scholar 

  30. Genoni, M. G. et al. Optimal estimation of joint parameters in phase space. Phys. Rev. A 87, 012107 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Danish Agency for Science, Technology and Innovation (Sapere Aude grant from FTP: 10-081599) and the Lundbeck Foundation. T.G. was supported by the HC Ørsted Postdoc programme. The authors would like to thank Roman Schnabel from the Albert Einstein Institute in Hannover for the support in using the squeezing source.

Author information

Authors and Affiliations

Authors

Contributions

A.A.B. and T.G. performed the main experiment and analysed the data. A.A.B., T.G. and B.M.N. developed the feedback protocol. T.G. and V.H. built the squeezed light source. A.A.B., T.G., M.G.A.P. and U.L.A. discussed the results. A.A.B and U.L.A wrote the paper with support from T.G. and M.G.A.P. U.L.A. conceived and supervised the project.

Corresponding author

Correspondence to Ulrik L. Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berni, A., Gehring, T., Nielsen, B. et al. Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nature Photon 9, 577–581 (2015). https://doi.org/10.1038/nphoton.2015.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing