Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Optical materials

Silicon carbide's quantum aspects

An engineered defect in silicon carbide that acts as an artificial molecule is found to be the brightest room-temperature source of single photons presently available in a bulk material. This finding suggests that silicon carbide has a promising future for applications in quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the atomic structure of SiC with the wavefunction of the C-antisite vacancy pairs.

BRETT JOHNSON & STEFANIA CASTELLETTO

References

  1. Round, H. J. Electrical World 19, 309 (1907).

    Google Scholar 

  2. Losev, O. V. Telegrafiyai Telefoniya bez Provodov 44, 485–494 (1927).

    ADS  Google Scholar 

  3. Castelletto, S. et al. http://dx.doi.org/10.1038/nmat3806 Nature Mater. (2013).

  4. O'Brien, J. L., Furusawa, A. & Vučković, J. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  5. DiVincenzo, D. P. Science 270, 255–261 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  6. Lounis, B. & Orrit, M. Rep. Prog. Phys. 68, 1129 (2005).

    Article  ADS  Google Scholar 

  7. Aharonovich, I. et al. Rep. Prog. Phys. 74, 076501 (2011).

    Article  ADS  Google Scholar 

  8. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  ADS  Google Scholar 

  9. Dzurak, Z. Nature 479, 47–48 (2011).

    Article  ADS  Google Scholar 

  10. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Nature 479, 84–87 (2011).

    Article  ADS  Google Scholar 

  11. Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Phys. Rev. Lett. 108, 226402 (2012).

    Article  ADS  Google Scholar 

  12. Son, N. T. et al. Phys. Rev. Lett. 96, 055501 (2006).

    Article  ADS  Google Scholar 

  13. Mizuochi, N. et al. Phys. Rev. B 66, 235202 (2002).

    Article  ADS  Google Scholar 

  14. Yamada, S., Song, B.-S., Asano, T. & Noda, S. Appl. Phys. Lett. 99, 201102 (2011).

    Article  ADS  Google Scholar 

  15. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Nature Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Boretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boretti, A. Silicon carbide's quantum aspects. Nature Photon 8, 88–90 (2014). https://doi.org/10.1038/nphoton.2013.375

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.375

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing