Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Casimir effect in microstructured geometries

Abstract

In 1948, Hendrik Casimir predicted that a generalized version of van der Waals forces would arise between two metal plates due to quantum fluctuations of the electromagnetic field. These forces become significant in micromechanical systems at submicrometre scales, such as in the adhesion between movable parts. The Casimir force, through a close connection to classical photonics, can depend strongly on the shapes and compositions of the objects, stimulating a decades-long search for geometries in which the force behaves very differently from the monotonic attractive force first predicted by Casimir. Recent theoretical and experimental developments have led to a new understanding of the force in complex microstructured geometries, including through recent theoretical predictions of Casimir repulsion between vacuum-separated metals, the stable suspension of objects and unusual non-additive and temperature effects, as well as experimental observations of repulsion in fluids, non-additive forces in nanotrench surfaces and the influence of new material choices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between van der Waals, Casimir–Polder and Casimir forces, whose origins lie in the quantum fluctuations of dipoles.
Figure 2: Results and set-ups of various experiments that have measured Casimir forces in the sphere–plate geometry.
Figure 3: Theoretical developments in the study of the influence of geometry and material choice on the Casimir force.
Figure 4: Experimental and theoretical works on a nanotrench geometry in which the Casimir force deviates significantly from the predictions of the PFA.
Figure 5: Experimental and theoretical works demonstrating the possibility of achieving Casimir repulsion, stable suspension of objects and large temperature effects in fluids.
Figure 6: Experimental demonstration of the influence of the Casimir effect on the micromechanical torsional-oscillator device of ref. 46 (shown in Fig. 2b).
Figure b1: Illustration of the conceptual difference underlying the physics of narrow-bandwidth classical photonic phenomena, best viewed at real frequencies ω, and broad-bandwidth quantum electromagnetic fluctuations (Casimir forces), best viewed at imaginary frequencies .

Similar content being viewed by others

References

  1. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 1991).

    Google Scholar 

  2. London, F. The general theory of molecular forces. Trans. Faraday Soc. 33, 8–26 (1937).

    Article  Google Scholar 

  3. Mahanty, J. & Ninham, B. W. Dispersion Forces (Academic, 1976).

    Google Scholar 

  4. Parsegian, V. A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ., 2006).

    Google Scholar 

  5. Ball, P. Fundamental physics: Feel the force. Nature 447, 772–774 (2007).

    Article  ADS  Google Scholar 

  6. Bordag, M., Mohideen, U. & Mostepanenko, V. M. New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Buhmann, S. Y. & Welsch, D.-G. Dispersion forces in macroscopic quantum electrodynamics. Prog. Quant. Electron. 31, 51–130 (2007).

    Article  ADS  Google Scholar 

  8. Capasso, F., Munday, J. N., Iannuzzi, D. & Chan, H. B. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE J. Sel. Top. Quant. Electron. 13, 400–415 (2007).

    Article  ADS  Google Scholar 

  9. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

    MATH  Google Scholar 

  10. Dzyaloshinskiı˘, I. E., Lifshitz, E. M. & Pitaevskiı˘, L. P. The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kardar, M. & Golestanian, R. The 'friction' of vacuum, and other fluctuation-induced forces. Rev. Mod. Phys. 71, 1233–1245 (1999).

    Article  ADS  Google Scholar 

  12. Lambrecht, A. The Casimir effect: a force from nothing. Phys. World 15, 29–32 (Sept. 2002).

    Article  Google Scholar 

  13. Lamoreaux, S. K. The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201–236 (2005).

    Article  ADS  Google Scholar 

  14. Lamoreaux, S. K. Casimir forces: Still surprising after 60 years. Phys. Today 60, 40–45 (2007).

    Article  Google Scholar 

  15. Lifshitz, E. M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–84 (1956).

    Google Scholar 

  16. Milonni, P. W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1993).

    Google Scholar 

  17. Milton, K. A. The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, 2001).

    Book  MATH  Google Scholar 

  18. Milton, K. A. The Casimir effect: Recent controversies and progress. J. Phys. A 37, R209–R277 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Onofrio, R. Casimir forces and non-Newtonian gravitation. New J. Phys. 8, 237 (2006).

    Article  ADS  Google Scholar 

  20. Plunien, G., Muller, B. & Greiner, W. The Casimir effect. Phys. Rep. 134, 87–193 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  21. Spruch, L. Long-range Casimir interactions. Science 272, 1452–1455 (1996).

    Article  ADS  Google Scholar 

  22. Rodriguez, A. W., Joannopoulos, J. D. & Johnson, S. G. Repulsive and attractive Casimir forces in a glide-symmetric geometry. Phys. Rev. A 77, 062107 (2008).

    Article  ADS  Google Scholar 

  23. Miri, M. & Golestanian, R. A frustrated nanomechanical device powered by the lateral Casimir force. Appl. Phys. Lett. 92, 113103 (2008).

    Article  ADS  Google Scholar 

  24. Genet, C., Lambrecht, A. & Reynaud, S. The Casimir effect in the nanoworld. Eur. Phys. J. Spec. Top. 160, 183–193 (2008).

    Article  Google Scholar 

  25. Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).

    Article  ADS  Google Scholar 

  26. Chan, H. B. et al. Measurement of the Casimir force between a gold sphere and a silicon surface with a nanotrench array. Phys. Rev. Lett. 101, 030401 (2008).

    Article  ADS  Google Scholar 

  27. Decca, R. S., Lopez, D., Fischbach, E. & Krause, D. E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003).

    Article  ADS  Google Scholar 

  28. Derjaguin, B. & Abrikossova, I. Direct measurements of molecular attraction of solids. J. Phys. Chem. Solids 5, 1–10 (1958).

    Article  ADS  Google Scholar 

  29. Ederth, T. Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range. Phys. Rev. A 62, 062104 (2000).

    Article  ADS  Google Scholar 

  30. Krause, D. E., Decca, R. S., López, D. & Fischbach, E. Experimental investigation of the Casimir force beyond the proximity-force approximation. Phys. Rev. Lett. 98, 050403 (2007).

    Article  ADS  Google Scholar 

  31. Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5–8 (1997).

    Article  ADS  Google Scholar 

  32. Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549–4552 (1998).

    Article  ADS  Google Scholar 

  33. Sushkov, A. O., Kim, W. J., Dalvit, D. A. R. & Lamoreaux, S. K. Observation of the thermal Casimir force. Nature Phys. 7, 230–233 (2011).

    Article  ADS  Google Scholar 

  34. van Blokland, P. H. G. M. & Overbeek, J. T. G. Van der Waals forces between objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. I 74, 2637–2651 (1978).

    Article  Google Scholar 

  35. Munday, J., Capasso, F. & Parsegian, V. A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009).

    Article  ADS  Google Scholar 

  36. Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 99, 170403 (2007).

    Article  ADS  Google Scholar 

  37. Gies, H. & Klingmuller, K. Worldline algorithms for Casimir configurations. Phys. Rev. D 74, 045002 (2006).

    Article  ADS  Google Scholar 

  38. Johnson, S. G. Numerical methods for computing Casimir interactions. Preprint at http://arxiv.org/abs/1007.0966 (2010).

  39. Lambrecht, A., Maia Neto, P. A. & Reynaud, S. The Casimir effect within scattering theory. New J. Phys. 8, 243 (2006).

    Article  ADS  Google Scholar 

  40. McCauley, A. P., Rodriguez, A. W., Joannopoulos, J. D. & Johnson, S. G. Casimir forces in the time domain: Applications. Phys. Rev. A 81, 012119 (2010).

    Article  ADS  Google Scholar 

  41. Pasquali, S. & Maggs, A. C. Fluctuation-induced interactions between dielectrics in general geometries. J. Chem. Phys. 129, 014703 (2008).

    Article  ADS  Google Scholar 

  42. Rahi, S. J., Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D 80, 085021 (2009).

    Article  ADS  Google Scholar 

  43. Reid, M. T. H., Rodriguez, A. W., White, J. & Johnson, S. G. Efficient computation of three-dimensional Casimir forces. Phys. Rev. Lett. 103, 040401 (2009).

    Article  ADS  Google Scholar 

  44. Rodriguez, A., Ibanescu, M., Iannuzzi, D., Joannopoulos, J. D. & Johnson, S. G. Virtual photons in imaginary time: Computing Casimir forces in arbitrary geometries via standard numerical electromagnetism. Phys. Rev. A 76, 032106 (2007).

    Article  ADS  Google Scholar 

  45. Rodriguez, A. W., McCauley, A. P., Joannopoulos, J. D. & Johnson, S. G. Casimir forces in the time domain: Theory. Phys. Rev. A 80, 012115 (2009).

    Article  ADS  Google Scholar 

  46. Chan, H. B., Aksyuk, V. A., Kleinman, R. N., Bishop, D. J. & Capasso, F. Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87, 211801 (2001).

    Article  ADS  Google Scholar 

  47. Casimir, H. B. G. & Polder, D. The influence of retardation on the London–van der Waals forces. Phys. Rev. 13, 360–372 (1948).

    Article  ADS  MATH  Google Scholar 

  48. Milton, K. A., Parashar, P. & Wagner, J. Exact results for Casimir interactions between dielectric bodies: the weak-coupling or van der Waals limit. Phys. Rev. Lett. 101, 160402 (2008).

    Article  ADS  Google Scholar 

  49. Sparnaay, M. Measurements of attractive forces between flat plates. Physica 24, 751–764 (1958).

    Article  ADS  Google Scholar 

  50. de Man, S., Heeck, K., Wijngaarden, R. J. & Iannuzzi, D. Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009).

    Article  ADS  Google Scholar 

  51. Kim, W. J., Sushkov, A. O., Dalvit, D. A. R. & Lamoreaux, S. K. Surface contact potential patches and Casimir force measurements. Phys. Rev. A 81, 022505 (2010).

    Article  ADS  Google Scholar 

  52. Munday, J. N. & Capasso, F. Reply to “Comment on 'Precision measurement of the Casimir–Lifshitz force in a fluid'”. Phys. Rev. A 77, 036103 (2008).

    Article  ADS  Google Scholar 

  53. Pirozhenko, I., Lambrecht, A. & Svetovoy, V. B. Sample dependence of the Casimir force. New J. Phys. 8, 238 (2006).

    Article  ADS  Google Scholar 

  54. van Zwol, P. J., Palasantzas, G. & De Hosson, J. T. M. Influence of dielectric properties on van der waals/Casimir forces in solid–liquid systems. Phys. Rev. B 79, 195428 (2009).

    Article  ADS  Google Scholar 

  55. Genet, C., Lambrecht, A., Maia Neto, P. & Reynaud, S. The Casimir force between rough metallic plates. Europhys. Lett. 62, 484–490 (2003).

    Article  ADS  Google Scholar 

  56. Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Roughness correction to the Casimir force: Beyond the proximity force approximation. Europhys. Lett. 69, 924–930 (2005).

    Article  ADS  Google Scholar 

  57. Klimchitskaya, G. L., Mohideen, U. & Mostapanenko, V. M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 81, 1827–1885 (2009).

    Article  ADS  Google Scholar 

  58. Decca, R. S. et al. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated spheres. Phys. Rev. D 75, 077101 (2007).

    Article  ADS  Google Scholar 

  59. Brevik, I., Aarseth, J. B., Hoye, J. S. & Milton, K. A. Temperature dependence of the Casimir effect. Phys. Rev. E 71, 056101 (2005).

    Article  ADS  Google Scholar 

  60. Derjaguin, B. V. Untersuchungen über die reibung und adhäsion. Kolloid Z. 69, 155–164 (1934).

    Article  Google Scholar 

  61. Roy, A., Lin, C. Y. & Mohideen, U. Improved precision measurement of the Casimir force. Phys. Rev. D 60, 111101(R) (1999).

    Article  ADS  Google Scholar 

  62. Palasantzas, G., van Zwol, P. J. & De Hosson, J. Th. M. Transition from Casimir to van der Waals force between macroscopic bodies. Appl. Phys. Lett. 93, 121912 (2008).

    Article  ADS  Google Scholar 

  63. Decca, R. et al. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 318, 37–80 (2005).

    Article  ADS  MATH  Google Scholar 

  64. Jourdan, G., Lambrecht, A., Comin, F. & Chevrier, J. Quantitative non-contact dynamic Casimir force measurements. Europhys. Lett. 85, 31001 (2009).

    Article  ADS  Google Scholar 

  65. Chan, H. B., Aksyuk, V. A., Kleinman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001).

    Article  ADS  Google Scholar 

  66. Bostrom, M. & Sernelius, B. E. Thermal effects on the Casimir force in the 0.1–0.5 μm range. Phys. Rev. Lett. 84, 4757–4760 (2000).

    Article  ADS  Google Scholar 

  67. Masuda, M. & Sasaki, M. Limits on nonstandard forces in the submicrometer range. Phys. Rev. Lett. 102, 171101 (2009).

    Article  ADS  Google Scholar 

  68. Klimchitskaya, G. L., Mohideen, U. & Mostepanenko, V. M. Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys. Rev. A 61, 062107 (2000).

    Article  ADS  Google Scholar 

  69. Tomaš, M. S. Casimir force in absorbing multilayers. Phys. Rev. A 66, 052103 (2002).

    Article  ADS  Google Scholar 

  70. Zhou, F. & Spruch, L. Van der waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls. Phys. Rev. A 52, 297–310 (1995).

    Article  ADS  Google Scholar 

  71. Boyer, T. H. Van der Waals forces and zero-point energy for dielectric and permeable materials. Phys. Rev. A 9, 2078–2084 (1974).

    Article  ADS  Google Scholar 

  72. Derjaguin, B. V., Abrikosova, I. I. & Lifshitz, E. M. Direct measurement of molecular attraction between solids separated by a narrow gap. Q. Rev. Chem. Soc. 10, 295–329 (1956).

    Article  Google Scholar 

  73. Bordag, M. Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem. Phys. Rev. D 73, 125018 (2006).

    Article  ADS  Google Scholar 

  74. Golestanian, R. Casimir–Lifshitz interaction between dielectrics of arbitrary geometry: A dielectric contrast perturbation theory. Phys. Rev. A 80, 012519 (2009).

    Article  ADS  Google Scholar 

  75. Milton, K. A. & Wagner, J. Multiple scattering methods in Casimir calculations. J. Phys. A 41, 155402 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Boyer, T. H. Quantum electrodynamic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 1764–1776 (1968).

    Article  ADS  Google Scholar 

  77. Milton, K. A., DeRaad, L. L. Jr & Schwinger, J. Casimir self-stress on a perfectly conducting spherical shell. Ann. Phys. 115, 388–403 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  78. Cavalcanti, R. M. Casimir force on a piston. Phys. Rev. D 69, 065015 (2004).

    Article  ADS  Google Scholar 

  79. Hertzberg, M. P., Jaffe, R. L., Kardar, M. & Scardicchio, A. Casimir forces in a piston geometry at zero and finite temperatures. Phys. Rev. D 76, 045016 (2007).

    Article  ADS  Google Scholar 

  80. Marachevsky, V. N. Casimir interaction: Pistons and cavity. J. Phys. A 41, 164007 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Kenneth, O., Klich, I., Mann, A. & Revzen, M. Repulsive Casimir forces. Phys. Rev. Lett. 89, 033001 (2002).

    Article  ADS  Google Scholar 

  82. Jaffe, R. L. Unnatural acts: Unphysical consequences of imposing boundary conditions on quantum fields. Proc. AIP Conf. 687, 3–12 (2003).

    Article  ADS  Google Scholar 

  83. Emig, T., Hanke, A., Golestanian, R. & Kardar, M. Probing the strong boundary shape dependence of the Casimir force. Phys. Rev. Lett. 87, 260402 (2001).

    Article  ADS  Google Scholar 

  84. Emig, T., Jaffe, R. L., Kardar, M. & Scardicchio, A. Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 96, 080403 (2006).

    Article  ADS  Google Scholar 

  85. Mazitelli, F. D., Dalvit, D. A. & Lobardo, F. C. Exact zero-point interaction energy between cylinders. New J. Phys. 8, 1–21 (2006).

    Article  MathSciNet  Google Scholar 

  86. Lambrecht, A. & Marachevsky, V. N. Casimir interactions of dielectric gratings. Phys. Rev. Lett. 101, 160403 (2008).

    Article  ADS  Google Scholar 

  87. Balian, R. & Duplantier, B. Electromagnetic waves near perfect conductors II: Casimir effect. Ann. Phys. 112, 165–208 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  88. Dalvit, D. A. R., Lombardo, F. C., Mazzitelli, F. D. & Onofrio, R. Exact Casimir interaction between eccentric cylinders. Phys. Rev. A 74, 020101(R) (2006).

    Article  ADS  Google Scholar 

  89. Kenneth, O. & Klich, I. Casimir forces in a T-operator approach. Phys. Rev. B 78, 014103 (2008).

    Article  ADS  Google Scholar 

  90. Reid, H., White, J. & Johnson, S. G. Efficient computation of Casimir interactions between arbitrary 3d objects with arbitrary material properties. Preprint at http://arxiv.org/abs/1010.5539 (2010).

  91. Xiong, J. L., Tong, M. S., Atkins, P. & Chew, W. C. Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods. Phys. Lett. A 374, 2517–2520 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Casimir energy between a plane and a sphere in electromagnetic vacuum. Phys. Rev. A 78, 012115 (2008).

    Article  ADS  Google Scholar 

  93. Rodriguez, A. et al. Computation and visualization of Casimir forces in arbitrary geometries: Non-monotonic lateral-wall forces and failure of proximity force approximations. Phys. Rev. Lett. 99, 080401 (2007).

    Article  ADS  Google Scholar 

  94. Maghrebi, M. F. et al. Casimir force between sharp-shaped conductors. Preprint at http://arxiv.org/abs/1010.3223 (2010).

    Google Scholar 

  95. Rodriguez, A. W. et al. Non-touching nanoparticle diclusters bound by repulsive and attractive Casimir forces. Phys. Rev. Lett. 104, 160402 (2010).

    Article  ADS  Google Scholar 

  96. Rahi, S. J. et al. Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders. Phys. Rev. A 77, 030101(R) (2008).

    Article  ADS  Google Scholar 

  97. Canaguier-Durand, A., Neto, P. A. M., Lambrecht, A. & Reynaud, S. Thermal Casimir effect in the plane–sphere geometry. Phys. Rev. Lett. 104, 040403 (2010).

    Article  ADS  Google Scholar 

  98. Weber, A. & Gies, H. Nonmonotonic thermal Casimir force from geometry-temperature interplay. Phys. Rev. Lett. 105, 040403 (2010).

    Article  ADS  Google Scholar 

  99. Kenneth, O. & Klich, I. Opposites attract: A theorem about the Casimir force. Phys. Rev. Lett. 97, 160401 (2006).

    Article  ADS  Google Scholar 

  100. Rahi, S. J., Kardar, M. & Emig, T. Constraints on stable equilibria with fluctuation-induced forces. Phys. Rev. Lett. 105, 070404 (2010).

    Article  ADS  Google Scholar 

  101. Levin, M., McCauley, A. P., Rodriguez, A. W., Reid, M. T. H. & Johnson, S. G. Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett. 105, 090403 (2010).

    Article  ADS  Google Scholar 

  102. Parsegian, V. A. & Weiss, G. H. Dielectric anisotropy and the van der waals interaction between bulk media. J. Adhesion 3, 259–267 (1972).

    Article  Google Scholar 

  103. Barash, Y. Moment of van der Waals forces between anisotropic bodies. Izv. Vuz. Radiofiz. 21, 1138–1143 (1978).

    ADS  Google Scholar 

  104. Munday, J. N., Iannuzzi, D., Barash, Y. & Capasso, F. Torque induced on birefringent plates by quantum fluctuations. Phys. Rev. A 71, 042102 (2005).

    Article  ADS  Google Scholar 

  105. Rodrigues, R. B., Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Vacuum-induced torque between corrugated metallic plates. Europhys. Lett. 76, 822–828 (2006).

    Article  ADS  MATH  Google Scholar 

  106. Milton, K. A., Parashar, P., Wagner, J. & Pelaez, C. Multiple scattering Casimir force calculations: layered and corrugated materials, wedges, and Casimir-Polder forces. J. Vac. Sci. Tech. B 28, C4A8–C4A16 (2010).

    Article  Google Scholar 

  107. Rodriguez, A. W. et al. Stable suspension and dispersion-induced transition from repulsive Casimir forces between fluid-separated eccentric cylinders. Phys. Rev. Lett. 101, 190404 (2008).

    Article  ADS  Google Scholar 

  108. Duraffourg, L. & Andreucci, P. Casimir force between doped silicon slabs. Phys. Lett. A 359, 406–411 (2006).

    Article  ADS  Google Scholar 

  109. Lambrecht, A., Pirozhenko, I., Duraffourg, L. & Andreucci, P. The Casimir effect for silicon and gold slabs. Europhys. Lett. 77, 44006 (2007).

    Article  ADS  Google Scholar 

  110. Büscher, R. & Emig, T. Nonperturbative approach to Casimir interactions in periodic geometries. Phys. Rev. A 69, 062101 (2004).

    Article  ADS  Google Scholar 

  111. Chiu, H.-C., Klimchitskaya, G. L., Marachevsky, V. N., Mostepanenko, V. M. & Mohideen, U. Lateral Casimir force between sinusoidally corrugated surfaces: asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Phys. Rev. B 81, 115417 (2010).

    Article  ADS  Google Scholar 

  112. Munday, J. N. & Capasso, F. Measurement of the Casimir–Lifshitz force in fluids: the effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008).

    Article  ADS  Google Scholar 

  113. Feiler, A. A., Bergstrom, L. & Rutland, M. W. Superlubricity using repulsive van der Waals forces. Langmuir 24, 2274–2276 (2008).

    Article  Google Scholar 

  114. Rodriguez, A. W., Woolf, D., McCauley, A. P., Capasso, F. & Johnson, S. G. Achieving a strongly temperature-dependent Casimir effect. Phys. Rev. Lett. 105, 060401 (2010).

    Article  ADS  Google Scholar 

  115. Buks, E. & Roukes, M. L. Metastability and the Casimir effect in micromechanical systems. Europhys. Lett. 54, 220–226 (2001).

    Article  ADS  Google Scholar 

  116. Serry, F. M., Walliser, D. & Jordan, M. G. The role of the Casimir effect in the static deflection of and stiction of membrane strips in microelectromechanical systems MEMS. J. Appl. Phys. 84, 2501–2506 (1998).

    Article  ADS  Google Scholar 

  117. Serry, F. M., Walliser, D. & Jordan, M. G. The anharmonic Casimir oscillator — the Casimir effect in a model microelectromechanical system. J. Microelec. Sys. 4, 193–205 (1995).

    Article  Google Scholar 

  118. Zuurbier, P., de Man, S., Gruca, G., Heeck, K. & Iannuzzi, D. Measurement of the Casimir force with a ferrule-top sensor. New J. Phys. 13, 023027 (2011).

    Article  ADS  Google Scholar 

  119. Romanowsky, M. B. & Capasso, F. Orientation-dependent Casimir force arising from highly anisotropic crystals: Application to Bi2Sr2CaCu2O8+ δ . Phys. Rev. A 78, 042110 (2008).

    Article  ADS  Google Scholar 

  120. Davids, P. S., Intravaia, F., Rosa, F. S. S. & Dalvit, D. A. R. Modal approach to Casimir forces in periodic structures. Phys. Rev. A 82, 062111 (2010).

    Article  ADS  Google Scholar 

  121. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, 1991).

    Book  Google Scholar 

  122. Leonhardt, U. & Philbin, T. G. Quantum levitation by left-handed metamaterials. New J. Phys. 9, 254 (2007).

    Article  ADS  Google Scholar 

  123. Rosa, F. S. S., Dalvit, D. A. R. & Milonni, P. W. Casimir–Lifshitz theory and metamaterials. Phys. Rev. Lett. 100, 183602 (2008).

    Article  ADS  Google Scholar 

  124. Zhao, R., Zhou, J., Koschny, T., Economou, E. N. & Soukoulis, C. M. Repulsive Casimir force in chiral metamaterials. Phys. Rev. Lett. 103, 103602 (2009).

    Article  ADS  Google Scholar 

  125. McCauley, A. P. et al. Microstructure effects for Casimir forces in chiral metamaterials. Phys. Rev. B 82, 165108 (2010).

    Article  ADS  Google Scholar 

  126. Rosa, F. S. S. On the possibility of Casimir repulsion using metamaterials. J. Phys. Conf. Ser. 161, 012039 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Iannuzzi, D. Woolf, M. Ibanescu, A. P. McCauley, H. Chan, J. N. Munday, V. A. Parsegian, S. Lamoreaux, J. D. Joannopoulos, M. Kardar, R. L. Jaffe, T. Emig, D. A. R. Dalvit and M. Lissanti for collaborations and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Capasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, A., Capasso, F. & Johnson, S. The Casimir effect in microstructured geometries. Nature Photon 5, 211–221 (2011). https://doi.org/10.1038/nphoton.2011.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing