Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organic photonics for communications

Abstract

Photons as information carriers have the potential to meet the ever-increasing demands on bandwidth and information density in fields such as information and communication technology, biomedicine and computing. Organic semiconductors may be well-suited to such applications, thanks to their ability to transmit, modulate and detect light in an architecture that is low cost, flexible, lightweight and robust. Here we review recent breakthroughs in organic photonics, including ultrafast all-optical modulation in polymer photonic crystals, silicon/organic hybrid systems, gain switching in polymer amplifiers and lasers, and new devices such as hybrid organic/inorganic electrically pumped lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organic DFB laser.
Figure 2: Hybrid system: An inorganic LED pumping an organic laser.
Figure 3: Devices demonstrating ultrafast all-optical switching.
Figure 4: Organic photodetectors.

Similar content being viewed by others

References

  1. Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photon. 3, 216–219 (2009).

    Article  ADS  Google Scholar 

  2. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  3. Hochberg, M. et al. Teraherz all-optical modulation in a silicon–polymer hybrid system. Nature Mater. 5, 703–709 (2006).

    ADS  Google Scholar 

  4. Baehr-Jones, T. W. & Hochberg, M. J. Polymer silicon hybrid systems: A platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).

    Google Scholar 

  5. Hadziioannou, G. & Malliaras, G. G. (eds.) Semiconducting Polymers (Wiley-VCH, 2007).

    Google Scholar 

  6. Brabec, C. & Dyakonov, V. (eds.) Organic Photovoltaics: Concepts and Realization (Springer, 2003).

    Google Scholar 

  7. Shinar, J. & Shinar, R. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J. Phys. D 41, 133001 (2008).

    ADS  Google Scholar 

  8. Zhigang, L. & Hong, M. (eds.) Organic Light-Emitting Materials and Devices (Taylor & Francis, 2006).

    Google Scholar 

  9. Müller, K. & Scherf, U. (eds.) Organic Light Emitting Devices (Wiley-VHC, 2006).

    Google Scholar 

  10. Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006).

    ADS  Google Scholar 

  11. Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Mater. 9, 496–503 (2010).

    ADS  Google Scholar 

  12. Brédas, J. L., Adant, C., Tackx, P., Persoons, A. & Pierce, B. M. Third-order nonlinear optical response in organic materials: Theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994).

    Google Scholar 

  13. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    ADS  Google Scholar 

  14. Barlow, I. A., Kreouzis, T. & Lidzey, D. G. High-speed electroluminescence modulation of a conjugated-polymer light emitting diode. Appl. Phys. Lett. 94, 243301 (2009).

    ADS  Google Scholar 

  15. Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    ADS  Google Scholar 

  16. Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Func. Mater. 19, 1728–1735 (2009).

    Google Scholar 

  17. Gwinner, M. C. et al. Integration of a rib waveguide distributed feedback structure into a light-emitting polymer field-effect transistor. Adv. Func. Mater. 19, 1360–1370 (2009).

    Google Scholar 

  18. Vardeny, Z. V. (ed.) Ultrafast Dynamics and Laser Action of Organic Semiconductors (Taylor & Francis, 2009).

    Google Scholar 

  19. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Google Scholar 

  20. Gaal, M. & List, E. J. W. Integrated self-aligned conjugated polymer fiber laser devices. Phys. Stat. Sol. 1, 202–204 (2007).

    Google Scholar 

  21. Schneider, D. et al. Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886–1888 (2004).

    ADS  Google Scholar 

  22. Berggren, M., Dodabalapur, A., Slusher, R. E., Timko, A. & Nalamasu, O. Organic solid-state lasers with imprinted gratings on plastic substrates. Appl. Phys. Lett. 72, 410–411 (1998).

    ADS  Google Scholar 

  23. Schütte, B. et al. Continuously tunable laser emission from a wedge-shaped organic microcavity. Appl. Phys. Lett. 92, 163309 (2008).

    ADS  Google Scholar 

  24. Song, M. H., Kabra, D., Wenger, B., Friend, R. H. & Snaith, H. J. Optically-pumped lasing in hybrid organic–inorganic light-emitting diodes. Adv. Func. Mater. 19, 2130–2136 (2009).

    Google Scholar 

  25. Ozaki, R., Shinpo, T., Yoshino, K., Ozaki, M. & Moritake, H. Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography. Appl. Phys. Express 1, 012003 (2008).

    ADS  Google Scholar 

  26. Berggren, M., Dodabalapur, A., Slusher, R. E. & Bao, Z. Light amplification in organic thin films using cascade energy transfer. Nature 389, 466–469 (1997).

    ADS  Google Scholar 

  27. Mróz, M. M. et al. Laser action from sugar-threaded polyrotaxane. Appl. Phys. Lett. 95, 031108 (2009).

    ADS  Google Scholar 

  28. Xia, R. et al. Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films. Synthetic Met. 155, 274–278 (2005).

    Google Scholar 

  29. Karnutsch, C. et al. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007).

    ADS  Google Scholar 

  30. Baumann, K. et al. Organic mixed-order photonic crystal lasers with ultrasmall footprint. Appl. Phys. Lett. 91, 171108 (2007).

    ADS  Google Scholar 

  31. Dong, Y. et al. Emission characteristics and performance comparison of organic lasers with one-dimensional distributed feedback. Jpn J. Appl. Phys. 48, 052101 (2009).

    ADS  Google Scholar 

  32. Harbers, R. et al. Enhanced feedback in organic photonic-crystal lasers. Appl. Phys. Lett. 87, 151121 (2005).

    ADS  Google Scholar 

  33. Jeong, S. M. et al. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals. Appl. Phys. Lett. 93, 221101 (2008).

    ADS  Google Scholar 

  34. Vasdekis, A. E. et al. Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Opt. Express 14, 9211–9216 (2006).

    ADS  Google Scholar 

  35. Riedl, T. et al. Tunable organic thin-film laser pumped by an inorganic violet diode laser. Appl. Phys. Lett. 88, 241116 (2006).

    ADS  Google Scholar 

  36. Yang, Y., Turnbull, G. A. & Samuel, I. D. W. Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92, 163306 (2008).

    ADS  Google Scholar 

  37. Tsiminis, G., Ruseckas, A., Samuel, I. D. W. & Turnbull, G. A. A two-photon pumped polyfluorene laser. Appl. Phys. Lett. 94, 253304 (2009).

    ADS  Google Scholar 

  38. Yap, B. K., Xia, R., Campoy-Quiles, M., Stavrinou, P. N. & Bradley, D. D. C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Mater. 7, 376–380 (2008).

    ADS  Google Scholar 

  39. Yamashita, K., Hase, K., Yanagi, H. & Oe, K. Optical amplification in organic dye-doped polymeric channel waveguide under CW optical pumping. Jpn J. Appl. Phys. 46, L688–L690 (2007).

    ADS  Google Scholar 

  40. Nakanotani, H., Adachi, C., Watanabe, S. & Katoh, R. Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett. 90, 231109 (2007).

    ADS  Google Scholar 

  41. Khalil, G. E., Adawi, A. M., Fox, A. M., Iraqi, A. & Lidzey, D. G. Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers. J. Chem. Phys. 130, 044903 (2009).

    ADS  Google Scholar 

  42. Sheng, C.-X., Tong, M., Singh, S. & Vardeny, Z. V. Experimental determination of the charge/neutral branching ratio η in the photoexcitation of π-conjugated polymers by broadband ultrafast spectroscopy. Phys. Rev. B 75, 085206 (2007).

    ADS  Google Scholar 

  43. Frampton, M. J. & Anderson, H. L. Insulated molecular wires. Angew. Chem. Int. Ed. 46, 1028–1064 (2007).

    Google Scholar 

  44. Nakanotani, H. et al. Extremely low-threshold amplified spontaneous emission of 9,9'-spirobifluorene derivatives and electroluminescence from field-effect transistor structure. Adv. Func. Mater. 17, 2328–2335 (2007).

    Google Scholar 

  45. Ribierre, J. C. et al. Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007).

    ADS  Google Scholar 

  46. Tsiminis, G. et al. Low-threshold organic laser based on an oligofluorene truxene with low optical losses. Appl. Phys. Lett. 94, 243304 (2009).

    ADS  Google Scholar 

  47. Giebink, N. C. & Forrest, S. R. Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302 (2009).

    ADS  Google Scholar 

  48. Schols, S., Kadashchuk, A., Heremans, P., Helfer, A. & Scherf, U. Triplet excitation scavenging in films of conjugated polymers. Chemphyschem 10, 1071–1076 (2009).

    Google Scholar 

  49. Ramuz, M., Leuenberger, D., Pfeiffer, R., Bürgi, L. & Winnewisser, C. OLED and OPD-based mini-spectrometer integrated on a single-mode planar waveguide chip. Eur. Phys. J. Appl. Phys. 46, 12510 (2009).

    ADS  Google Scholar 

  50. Rabe, T. et al. Quasi-continuous-wave operation of an organic thin-film distributed feedback laser. Appl. Phys. Lett. 89, 081115 (2006).

    ADS  Google Scholar 

  51. Weinberger, M. R. et al. Continuously color-tunable rubber laser. Adv. Mater. 16, 130–133 (2004).

    Google Scholar 

  52. Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    ADS  Google Scholar 

  53. Lu, M., Choi, S. S., Wagner, C. J., Eden, J. G. & Cunningham, B. T. Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser. Appl. Phys. Lett. 92, 261502 (2008).

    ADS  Google Scholar 

  54. Åslund, A., Nilsson, K. P. R. & Konradsson, P. Fluorescent oligo and poly-thiophenes and their utilization for recording biological events of diverse origin — when organic chemistry meets biology. J. Chem. Biol. 2, 161–175 (2009).

    Google Scholar 

  55. Peng, H., Zhang, L., Soeller, C. & Travas-Sejdic, J. Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009).

    Google Scholar 

  56. Richardson, S., Barcena, H. S., Turnbull, G. A., Burn, P. L. & Samuel, I. D. W. Chemosensing of 1,4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. Appl. Phys. Lett. 95, 063305 (2009).

    ADS  Google Scholar 

  57. Lu, M., Choi, S. S., Irfan, U. & Cunningham, B. T. Plastic distributed feedback laser biosensor. Appl. Phys. Lett. 93, 111113 (2008).

    ADS  Google Scholar 

  58. Koike, Y. & Asai, M. The future of plastic optical fiber. NPG Asia Mater. 1, 22–28 (2009).

    Google Scholar 

  59. Polishuk, P. Plastic optical fibers branch out. IEEE Commun. Mag. 44, 140–148 (September 2006).

    Google Scholar 

  60. Zubia, J. & Arrue, J. Plastic optical fibers: An introduction to their technological processes and applications. Opt. Fiber. Technol. 7, 101–140 (2001).

    ADS  Google Scholar 

  61. Krauser, J. & Ziemann, O. POF – Polymer Optical Fibers for Data Communication (Springer, 2002).

    Google Scholar 

  62. Lee, S. C. J., Breyer, F., Randel, S., van den Boom, H. P. A. & Koonen, A. M. J. Gigabit Ethernet over standard step-index polymer optical fiber. Proc. 17th Int. Conf. on Plastic Optical Fibers 1–4 (2008).

  63. Yang, D. X., Yu, J., Tao, X. & Tam, H. Structural and mechanical properties of polymeric optical fiber. Mater. Sci. Eng. A 364, 256–259 (2004).

    Google Scholar 

  64. Koike, Y., Ishigure, T. & Nihei, E. High-bandwidth graded-index polymer optical fiber. J. Lightwave Technol. 13, 1475–1489 (1995).

    ADS  Google Scholar 

  65. Yang, H. J. et al. 47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation. J. Lightwave Technol. 28, 352–359 (2010).

    ADS  Google Scholar 

  66. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219–225 (2008).

    ADS  Google Scholar 

  67. Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nature Photon. 3, 450–452 (2009).

    ADS  Google Scholar 

  68. Edrington, A. C. et al. Polymer-based photonic crystals. Adv. Mater. 13, 421–425 (2001).

    Google Scholar 

  69. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Edit. 37, 550–575 (1998).

    Google Scholar 

  70. Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Google Scholar 

  71. http://www.impressrd.jp/photonics/files/u3/C8k_Optical_Technologies_for_Car_Application.pdf

  72. Tay, S. et al. An updatable holographic three-dimensional display. Nature 451, 694–698 (2008).

    ADS  Google Scholar 

  73. Amarasinghe, D., Ruseckas, A., Turnbull, G. A. & Samuel, I. D. W. Organic semiconductor optical amplifiers. Proc. IEEE 97, 1637–1650 (2009).

    Google Scholar 

  74. Tagaya, A. et al. Polymer optical fiber amplifier. Appl. Phys. Lett. 63, 883–884 (1993).

    ADS  Google Scholar 

  75. Peng, G. D., Chu, P. L., Xiong, Z., Whitbread, T. & Chaplin, R. P. Broadband tunable optical amplification in rhodamine B-doped step-index polymer optical fiber. Opt. Commun. 129, 353–357 (1993).

    ADS  Google Scholar 

  76. Liang, H. et al. Optical amplification of eu(dbm)3phen-doped polymer optical fiber amplifier. Opt. Lett. 29, 477–479 (2004).

    ADS  Google Scholar 

  77. Rajesh, M. et al. Fabrication and characterization of dye-doped polymer optical fiber as a light amplifier. Appl. Optics 46, 106–112 (2007).

    ADS  Google Scholar 

  78. Clark, J. et al. Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers. J. Nanophoton. 2, 023504 (2008).

    Google Scholar 

  79. Amarasinghe, D., Ruseckas, A., Vasdekis, A. E., Turnbull, G. A. & Samuel, I. D. W. High-gain broadband solid-state optical amplifier using a semiconducting copolymer. Adv. Mater. 21, 107–110 (2009).

    Google Scholar 

  80. Enami, Y. et al. Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro-optic coefficients. Nature Photon. 1, 180–185 (2007).

    ADS  Google Scholar 

  81. Lee, M. et al. Broadband modulation of light by using an electro-optic polymer. Science 298, 1401–1403 (2002).

    ADS  Google Scholar 

  82. Hu, X., Liu, Y., Tian, J., Cheng, B. & Zhang, D. Ultrafast all-optical switching in two-dimensional organic photonic crystal. Appl. Phys. Lett. 86, 121102 (2005).

    ADS  Google Scholar 

  83. Hu, X., Jiang, P., Ding, C., Yang, H. & Gong, Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photon. 2, 185–189 (2008).

    ADS  Google Scholar 

  84. Morandi, V., Marabelli, F., Amendola, V., Meneghetti, M. & Comoretto, D. Colloidal photonic crystals doped with gold nanoparticles: Spectroscopy and optical switching properties. Adv. Func. Mater. 17, 2779–2786 (2007).

    Google Scholar 

  85. Virgili, T., Marinotto, D., Manzoni, C., Cerullo, G. & Lanzani, G. Ultrafast intrachain photoexcitation of polymeric semiconductors. Phys. Rev. Lett. 94, 117402 (2005).

    ADS  Google Scholar 

  86. Vishnubhatla, K. C. et al. Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels. Appl. Phys. Lett. 94, 041123 (2009).

    ADS  Google Scholar 

  87. Perissinotto, S., Lanzani, G., Zavelani-Rossi, M., Salerno, M. & Gigli, G. Ultrafast optical switching in distributed feedback polymer laser. Appl. Phys. Lett. 91, 191108 (2007).

    ADS  Google Scholar 

  88. Xia, R. et al. Wavelength conversion from silica to polymer optical fibre communication wavelengths via ultrafast optical gain switching in a distributed feedback polymer laser. Adv. Mater. 19, 4054–4057 (2007).

    Google Scholar 

  89. Amarasinghe, D., Ruseckas, A., Vasdekis, A. E., Turnbull, G. A. & Samuel, I. D. W. Picosecond gain switching of an organic semiconductor optical amplifier. Appl. Phys. Lett. 92, 083305 (2008).

    ADS  Google Scholar 

  90. Brabec, C. J., Hauch, J. A., Schilinsky, P. & Waldauf, C. Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bulletin 30, 50–52 (2005).

    Google Scholar 

  91. Hoppe, H. & Sariciftci, N. S. Organic solar cells: An overview. J. Mater. Res. 19, 1924–1945 (2004).

    ADS  Google Scholar 

  92. Kippelen, B. & Bredas, J. L. Organic photovoltaics. Energ. Environ. Sci. 2, 251–261 (2009).

    Google Scholar 

  93. Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).

    ADS  Google Scholar 

  94. Yao, Y. et al. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater. 19, 3979–3983 (2007).

    Google Scholar 

  95. Ramuz, M., Burgi, L., Winnewisser, C. & Seitz, P. High sensitivity organic photodiodes with low dark currents and increased lifetimes. Org. Electron. 9, 369–376 (2008).

    Google Scholar 

  96. Morimune, T., Kajii, H. & Ohmori, Y. Photoresponse properties of a high-speed organic photodetector based on copperphthalocyanine under red light illumination. IEEE Photon. Tech. Lett. 18, 2662–2664 (2006).

    ADS  Google Scholar 

  97. Blakesey, J. et al. Organic semiconductor devices for X-ray imaging. Nucl. Instrum. Meth. A 580, 774–777 (2007).

    ADS  Google Scholar 

  98. Xu, X., Davanco, M., Qi, X. & Forrest, S. R. Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays. Org. Electron. 9, 1122–1127 (2008).

    Google Scholar 

  99. Xu, X., Mihnev, M., Taylor, A. & Forrest, S. R. Organic photodetector arrays with indium tin oxide electrodes patterned using directly transferred metal masks. Appl. Phys. Lett. 94, 043313 (2009).

    ADS  Google Scholar 

  100. An, K. H., O'Connor, B., Pipe, K. P., Zhao, Y. & Shtein, M. Scanning optical probe microscopy with submicrometer resolution using an organic photodetector. Appl. Phys. Lett. 93, 033311 (2008).

    ADS  Google Scholar 

  101. Pais, A., Banerjee, A., Klotzkin, D. & Papautsky, I. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab on a Chip 8, 794–800 (2008).

    Google Scholar 

  102. Wojciechowski, J. R. et al. Organic photodiodes for biosensor miniaturization. Anal. Chem. 81, 3455–3461 (2009).

    Google Scholar 

  103. Ratcliff, E. L. et al. A planar, chip-based, dual-beam refractometer using an integrated organic light-emitting diode (OLED) light source and organic photovoltaic (OPV) detectors. Anal. Chem. 82, 2734–2742 (2010).

    Google Scholar 

  104. Antognazza, M. R., Scherf, U., Monti, P. & Lanzani, G. Organic-based tristimuli colorimeter. Appl. Phys. Lett. 90, 163509 (2007).

    ADS  Google Scholar 

  105. Gambetta, A., Virgili, T. & Lanzani, G. Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes. Appl. Phys. Lett. 86, 253509 (2005).

    ADS  Google Scholar 

  106. Garbugli, M., Gambetta, A., Schrader, S., Virgili, T. & Lanzani, G. Multi-photon non-linear photocurrent in organic photodiodes. J. Mater. Chem. 19, 7551–7560 (2009).

    Google Scholar 

  107. Huang, Y.-S. et al. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nature Mater. 7, 483–489 (2008).

    ADS  Google Scholar 

  108. Peumans, P., Bulović, V. & Forrest, S. R. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 76, 2650–2652 (2000).

    ADS  Google Scholar 

  109. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    ADS  Google Scholar 

  110. Ros, B. M. in Organic Materials for Non-linear Optics 375–390 (Springer, 2007).

    Google Scholar 

  111. Marder, S. R. et al. Large molecular third-order optical nonlinearities in polarized carotenoids. Science 276, 1233–1236 (1997).

    Google Scholar 

  112. Zavelani-Rossi, M., Perissinotto, S., Lanzani, G., Salerno, M. & Gigli, G. Laser dynamics in organic distributed feedback lasers. Appl. Phys. Lett. 89, 181105 (2006).

    ADS  Google Scholar 

  113. Virgili, T. et al. Ultrafast optical gain switch in organic photonic devices. J. Mater. Chem. 20, 519–523 (2010).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from EU projects 026365-POLYCOM, 248052-PHOTO-FET and Royal Society Dorothy Hodgkin Fellowship (JC). JC also thanks D. Narayana Rao and his group for generous hospitality and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J., Lanzani, G. Organic photonics for communications. Nature Photon 4, 438–446 (2010). https://doi.org/10.1038/nphoton.2010.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing