Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coherent lensless X-ray imaging

Abstract

Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is able to circumvent this limitation. A number of classes of lensless X-ray imaging have been developed so far, with many based on other forms of optics. Here we report the key progress in this area, describe the potential applications for biology and materials science, and discuss the prospect for imaging single molecules using X-ray free-electron lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configurations for X-ray coherent diffractive imaging.
Figure 2: Biological imaging is an important area for applications of CDI.
Figure 3: Bragg CDI is able to recover the three-dimensional shape and strain structure from a nanocrystal.
Figure 4: Scanning diffraction microscopy is able to recover images of extended objects.
Figure 5: Holographic reconstructions of a sample containing bit-patterned magnetic media.

Similar content being viewed by others

References

  1. Sayre, D. in Imaging Processes and Coherence in Physics Vol. 112 (eds Schlenker, A. et al.) 229–235 (Springer, 1980).

    Book  Google Scholar 

  2. Yun, W. B., Kirz, J. & Sayre, D. Observation of the soft X-ray diffraction pattern of a single diatom. Acta Crystallogr. A 43, 131–133 (1987).

    Article  Google Scholar 

  3. Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  4. Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843–843 (1952).

    Article  Google Scholar 

  5. Fienup, J. R. Reconstruction of an object from modulus of its Fourier-transform. Opt. Lett. 3, 27–29 (1978).

    Article  ADS  Google Scholar 

  6. Gerchberg, R. W. & Saxton, W. O. Practical algorithm for determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  7. Bates, R. H. T. Fourier phase problems are uniquely solvable in more than one dimension: Underlying theory. Optik 61, 247–262 (1982).

    Google Scholar 

  8. Nugent, K. A., Peele, A. G., Quiney, H. M. & Chapman, H. N. Diffraction with wavefront curvature: A path to unique phase recovery. Acta Crystallogr. A 61, 373–381 (2005).

    Article  ADS  Google Scholar 

  9. Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

    Article  ADS  Google Scholar 

  10. Pitts, T. A. & Greenleaf, J. F. Fresnel transform phase retrieval from magnitude. IEEE T. Ultrason. Ferr. 50, 1035–1045 (2003).

    Article  Google Scholar 

  11. Howells, M. R. et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron Spectrosc. 170, 4–12 (2009).

    Article  Google Scholar 

  12. Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier-transform using a support constraint. J. Opt. Soc. Am. A 4, 118–123 (1987).

    Article  ADS  Google Scholar 

  13. Fienup, J. R. Phase retrieval algorithms: A comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  ADS  Google Scholar 

  14. Elser, V. Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20, 40–55 (2003).

    Article  ADS  Google Scholar 

  15. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  ADS  Google Scholar 

  16. Quiney, H. M. Coherent diffractive imaging using short wavelength light sources: A tutorial review. J. Mod. Opt. 57, 1109–1149 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78, 011301 (2007).

    Article  ADS  Google Scholar 

  18. Williams, G. J., Quiney, H. M., Peele, A. G. & Nugent, K. A. Coherent diffractive imaging and partial coherence. Phys. Rev. B 75, 104102 (2007).

    Article  ADS  Google Scholar 

  19. Whitehead, L. W. et al. Diffractive imaging using partially coherent X-rays. Phys. Rev. Lett. 103, 243902 (2009).

    Article  ADS  Google Scholar 

  20. Hoppe, W. Diffraction in inhomogeneous primary wave fields: Principle of phase determination from electron diffraction interference. Acta Crystallogr. A 25, 495–501 (1969).

    Article  ADS  Google Scholar 

  21. Nugent, K. A., Peele, A. G., Chapman, H. N. & Mancuso, A. P. Unique phase recovery for nonperiodic objects. Phys. Rev. Lett. 91, 203902 (2003).

    Article  ADS  Google Scholar 

  22. Williams, G. J. et al. Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97, 025506 (2006).

    Article  ADS  Google Scholar 

  23. Quiney, H. M., Nugent, K. A. & Peele, A. G. Iterative image reconstruction algorithms using wave-front intensity and phase variation. Opt. Lett. 30, 1638–1640 (2005).

    Article  ADS  Google Scholar 

  24. Miao, J. W. et al. High resolution 3D X-ray diffraction microscopy. Phys. Rev. Lett. 89, 088303 (2002).

    Article  ADS  Google Scholar 

  25. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

    Article  ADS  Google Scholar 

  26. Schroer, C. G. et al. Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101, 090801 (2008).

    Article  ADS  Google Scholar 

  27. Takahashi, Y. et al. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused X-ray beam. Phys. Rev. B 80, 054103 (2009).

    Article  ADS  Google Scholar 

  28. Abbey, B. et al. Keyhole coherent diffractive imaging. Nature Phys. 4, 394–398 (2008).

    Article  ADS  Google Scholar 

  29. Miao, J. W. et al. Imaging whole Escherichia coli bacteria by using single-particle X-ray diffraction. Proc. Natl Acad. Sci. USA 100, 110–112 (2003).

    Article  ADS  Google Scholar 

  30. Nelson, J. et al. High-resolution X-ray diffraction microscopy of specifically labeled yeast cells. Proc. Natl Acad. Sci. USA 107, 7235–7239 (2010).

    Article  ADS  Google Scholar 

  31. Jiang, H. D. et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 107, 11234–11239 (2010).

    Article  ADS  Google Scholar 

  32. Sakdinawat, A. & Attwood, D. Nanoscale X-ray imaging. Nature Photon. 4, 840–848 (2010).

    Article  ADS  Google Scholar 

  33. Shapiro, D. et al. Biological imaging by soft X-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 102, 15343–15346 (2005).

    Article  ADS  Google Scholar 

  34. Huang, X. J. et al. Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys. Rev. Lett. 103, 198101 (2009).

    Article  ADS  Google Scholar 

  35. Lima, E. et al. Cryogenic X-ray diffraction microscopy for biological samples. Phys. Rev. Lett. 103, 198102 (2009).

    Article  ADS  Google Scholar 

  36. Williams, G. J. et al. High-resolution X-ray imaging of Plasmodium falciparum-infected red blood cells. Cytom. Part A 73A, 949–957 (2008).

    Article  Google Scholar 

  37. Nishino, Y., Takahashi, Y., Imamoto, N., Ishikawa, T. & Maeshima, K. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction. Phys. Rev. Lett. 102, 018101 (2009).

    Article  ADS  Google Scholar 

  38. Barty, A. et al. Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms. Phys. Rev. Lett. 101, 055501 (2008).

    Article  ADS  Google Scholar 

  39. Abbey, B. et al. Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm. Appl. Phys. Lett. 93, 214101 (2008).

    Article  ADS  Google Scholar 

  40. Ditmire, T. et al. Spatial coherence measurement of soft X-ray radiation produced by high order harmonic generation. Phys. Rev. Lett. 77, 4756–4759 (1996).

    Article  ADS  Google Scholar 

  41. Sandberg, R. L. et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007).

    Article  ADS  Google Scholar 

  42. Chen, B. et al. Multiple wavelength diffractive imaging. Phys. Rev. A 79, 023809 (2009).

    Article  ADS  Google Scholar 

  43. Robinson, I. K., Vartanyants, I. A., Williams, G. J., Pfeifer, M. A. & Pitney, J. A. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys. Rev. Lett. 8719, 195505 (2001).

    Article  ADS  Google Scholar 

  44. Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. Three-dimensional imaging of microstructure in Au nanocrystals. Phys. Rev. Lett. 90, 175501 (2003).

    Article  ADS  Google Scholar 

  45. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  ADS  Google Scholar 

  46. Robinson, I. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nature Mater. 8, 291–298 (2009).

    Article  ADS  Google Scholar 

  47. Rodenburg, J. M. & Bates, R. H. T. The theory of superresolution electron-microscopy via Wigner-distribution deconvolution. Phil. Trans. R. Soc. Lond. A 339, 521–553 (1992).

    Article  ADS  Google Scholar 

  48. Chapman, H. N. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution. Ultramicroscopy 66, 153–172 (1996).

    Article  Google Scholar 

  49. Faulkner, H. M. L. & Rodenburg, J. M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004).

    Article  ADS  Google Scholar 

  50. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    Article  ADS  Google Scholar 

  51. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  ADS  Google Scholar 

  52. Giewekemeyer, K. et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 107, 529–534 (2010).

    Article  ADS  Google Scholar 

  53. McNulty, I. et al. High-resolution imaging by Fourier-transform X-ray holography. Science 256, 1009–1012 (1992).

    Article  ADS  Google Scholar 

  54. Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  ADS  Google Scholar 

  55. Schlotter, W. F. et al. Multiple reference Fourier transform holography with soft X-rays. Appl. Phys. Lett. 89, 163112 (2006).

    Article  ADS  Google Scholar 

  56. Marchesini, S. et al. Massively parallel X-ray holography. Nature Photon. 2, 560–563 (2008).

    Article  Google Scholar 

  57. Podorov, S. G., Pavlov, K. M. & Paganin, D. M. A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. Opt. Express 15, 9954–9962 (2007).

    Article  ADS  Google Scholar 

  58. Guizar-Sicairos, M. & Fienup, J. R. Holography with extended reference by autocorrelation linear differential operation. Opt. Express 15, 17592–17612 (2007).

    Article  ADS  Google Scholar 

  59. Zhu, D. L. et al. High-resolution X-ray lensless imaging by differential holographic encoding. Phys. Rev. Lett. 105, 043901 (2010).

    Article  ADS  Google Scholar 

  60. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  ADS  Google Scholar 

  61. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    Article  ADS  Google Scholar 

  62. Hau-Riege, S. P. et al. Sacrificial tamper slows down sample explosion in FLASH diffraction experiments. Phys. Rev. Lett. 104, 064801 (2010).

    Article  ADS  Google Scholar 

  63. Hau-Riege, S. P., London, R. A., Huldt, G. & Chapman, H. N. Pulse requirements for X-ray diffraction imaging of single biological molecules. Phys. Rev. E 71, 061919 (2005).

    Article  ADS  Google Scholar 

  64. Jurek, Z., Oszlanyi, G. & Faigel, G. Imaging atom clusters by hard X-ray free-electron lasers. Europhys. Lett. 65, 491–497 (2004).

    Article  ADS  Google Scholar 

  65. Fung, R., Shneerson, V., Saldin, D. K. & Ourmazd, A. Structure from fleeting illumination of faint spinning objects in flight. Nature Phys. 5, 64–67 (2009).

    Article  ADS  Google Scholar 

  66. Spence, J. C. H. & Doak, R. B. Single molecule diffraction. Phys. Rev. Lett. 92 (2004).

Download references

Acknowledgements

K.A.N. acknowledges the support of the Australian Research Council through its Federation Fellowship and Centres of Excellence programmes. H.N.C. acknowledges support from the Helmholtz Association and the Joachim Herz Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Nugent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, H., Nugent, K. Coherent lensless X-ray imaging. Nature Photon 4, 833–839 (2010). https://doi.org/10.1038/nphoton.2010.240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing