Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geopotential measurements with synchronously linked optical lattice clocks

Abstract

According to Einstein's theory of relativity, the passage of time changes in a gravitational field1,2. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling3 through comparison of optical clocks1,4,5. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre6 to synchronously operate7 the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks8,9 and interferometers10. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10−18, consistent with an independent measurement by levelling and gravimetry11. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental set-up.
Figure 2: Excitation probability and instability of the clock comparison.
Figure 3: Frequency differences between clocks.
Figure 4: Calculated tidal perturbation on the geopotential for 15 days, from 1 September 2015.

Similar content being viewed by others

References

  1. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  2. Pound, R. V. & Rebka, G. A. Jr Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960).

    Article  ADS  Google Scholar 

  3. Vermeer, M. Chronometric levelling. Rep. Finnish Geodetic Inst. 83, 1–7 (1983).

    Google Scholar 

  4. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  5. Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nature Photon. 9, 185–189 (2015).

    Article  ADS  Google Scholar 

  6. Akatsuka, T. et al. 30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks. Jpn. J. Appl. Phys. 53, 032801 (2014).

    Article  ADS  Google Scholar 

  7. Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nature Photon. 5, 288–292 (2011).

    Article  ADS  Google Scholar 

  8. Chou, C. W., Hume, D. B., Thorpe, M. J., Wineland, D. J. & Rosenband, T. Quantum coherence between two atoms beyond Q = 1015. Phys. Rev. Lett. 106, 160801 (2011).

    Article  ADS  Google Scholar 

  9. Polzik, E. S. & Ye, J. Entanglement and spin squeezing in a network of distant optical lattice clocks. Phys. Rev. A 93, 021404(R) (2016).

    Article  ADS  Google Scholar 

  10. Graham, P. W., Hogan, J. M., Kasevich, M. A. & Rajendran, S. New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013).

    Article  ADS  Google Scholar 

  11. Vanicek, P., Castle, R. O. & Balazs, E. I. Geodetic leveling and its applications. Rev. Geophys. 18, 505–524 (1980).

    Article  ADS  Google Scholar 

  12. Riehle, F. Towards a redefinition of the second based on optical atomic clocks. C. R. Phys. 16, 506–515 (2015).

    Article  Google Scholar 

  13. Newbury, N. R., Williams, P. A. & Swann, W. C. Coherent transfer of an optical carrier over 251 km. Opt. Lett. 32, 3056–3058 (2007).

    Article  ADS  Google Scholar 

  14. Fujieda, M. et al. Carrier-phase two-way satellite frequency transfer over a very long baseline. Metrologia 51, 253–262 (2014).

    Article  ADS  Google Scholar 

  15. Ludlow, A. D. et al. Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    Article  ADS  Google Scholar 

  16. Yamaguchi, A. et al. Direct comparison of distant optical lattice clocks at the 10−16 uncertainty. Appl. Phys. Exp. 4, 082203 (2011).

    Article  ADS  Google Scholar 

  17. Calonico, D. et al. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B 117, 979–986 (2014).

    Article  ADS  Google Scholar 

  18. Chiodo, N. et al. Cascaded optical fiber link using the internet network for remote clocks comparison. Opt. Express 23, 33927–33937 (2015).

    Article  ADS  Google Scholar 

  19. Raupach, S. M. F., Koczwara, A. & Grosche, G. Brillouin amplification supports 1×10−20 uncertainty in optical frequency transfer over 1400 km of underground fiber. Phys. Rev. A 92, 021801(R) (2015).

    Article  ADS  Google Scholar 

  20. Lisdat, C. et al. A clock network for geodesy and fundamental science. Preprint at http://arxiv.org/abs/1511.07735 (2015).

  21. Poli, N. et al. A transportable strontium optical lattice clock. Appl. Phys. B 117, 1107–1116 (2014).

    Article  ADS  Google Scholar 

  22. Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887–894 (1998).

    Article  Google Scholar 

  23. Katori, H. Optical lattice clocks and quantum metrology. Nature Photon. 5, 203–210 (2011).

    Article  ADS  Google Scholar 

  24. Leibrandt, D. R., Thorpe, M. J., Bergquist, J. C. & Rosenband, T. Field-test of a robust, portable, frequency-stable laser. Opt. Express 19, 10278–10286 (2011).

    Article  ADS  Google Scholar 

  25. Hafner, S. et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett. 40, 2112–2115 (2015).

    Article  ADS  Google Scholar 

  26. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photon. 6, 687–692 (2012).

    Article  ADS  Google Scholar 

  27. Terra, O., Grosche, G. & Schnatz, H. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. Opt. Express 18, 16102–16111 (2010).

    Article  ADS  Google Scholar 

  28. Katori, H., Ovsiannikov, V. D., Marmo, S. I. & Palchikov, V. G. Strategies for reducing the light shift in atomic clocks. Phys. Rev. A 91, 052503 (2015).

    Article  ADS  Google Scholar 

  29. Bondarescu, R. et al. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 202, 1770–1774 (2015).

    Article  ADS  Google Scholar 

  30. Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nature Phys. 10, 933–936 (2014).

    Article  ADS  Google Scholar 

  31. Munekane, H. & Boehm, J. Numerical simulation of troposphere-induced errors in GPS-derived geodetic time series over Japan. J. Geod. 84, 405–417 (2010).

    Article  ADS  Google Scholar 

  32. Hall, J., Long-Sheng, M. & Kramer, G. Principles of optical phase-locking: application to internal mirror He-Ne lasers phase-locked via fast control of the discharge current. IEEE J. Quant. Electron. 23, 427–437 (1987).

    Article  ADS  Google Scholar 

  33. Williams, P. A., Swann, W. C. & Newbury, N. R. High-stability transfer of an optical frequency over long fiber-optic links. J. Opt. Soc. Am. B 25, 1284–1293 (2008).

    Article  ADS  Google Scholar 

  34. Musha, M., Hong, F.-L., Nakagawa, K. & Ueda, K. Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network. Opt. Express 16, 16459–16466 (2008).

    Article  ADS  Google Scholar 

  35. Chigusa, Y. et al. Low-loss pure-silica-core fibers and their possible impact on transmission systems. J. Lightwave Technol. 23, 3541–3355 (2005).

    Article  ADS  Google Scholar 

  36. Tamura, Y. A computer program for calculating the tide-generating force. Publ. Int. Lat. Obs. Mizusawa 16, 1–20 (1982).

    ADS  Google Scholar 

  37. Agnew, D. C. SPOTL: Some Programs for Ocean-Tide Loading (Scripps Institution of Oceanography, 2013).

    Google Scholar 

  38. Tamura, Y. A harmonic development of the tide-generating potential. Bull. Inf. Marées Terrestres 99, 6813–6855 (1987).

    Google Scholar 

  39. Cheng, Y. & Andersen, O. B. Multimission empirical ocean tide modeling for shallow waters and polar seas. J. Geophys. Res. Oceans 116, C11001 (2011).

    Article  ADS  Google Scholar 

  40. Matsumoto, K., Takanezawa, T. & Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J. Oceanogr. 56, 567–581 (2000).

    Article  Google Scholar 

  41. Goodkind, J. M. Test of theoretical solid earth and ocean gravity tides. Geophys. J. Int. 125, 106–114 (1996).

    Article  ADS  Google Scholar 

  42. Stammer, D. et al. Accuracy assessment of global barotropic ocean tide models. Rev. Geophys. 52, 243–282 (2014).

    Article  ADS  Google Scholar 

  43. Irwan, M., Kimata, F. & Fujii, N. Time dependent modeling of magma intrusion during the early stage of the 2000 Miyakejima activity. J. Volcan. Geotherm. Res. 150, 202–212 (2006).

    Article  ADS  Google Scholar 

  44. Ohta, Y., Kimata, F. & Sagiya, T. Reexamination of the interplate coupling in the Tokai region, central Japan, based on the GPS data in 1997–2002. Geophys. Res. Lett. 31, L24604 (2004).

    Article  ADS  Google Scholar 

  45. Yokota, Y. & Koketsu, K. A very long-term transient event preceding the 2011 Tohoku earthquake. Nature Commun. 6, 5934 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Japan Society for the Promotion of Science through its Funding Program for World-Leading Innovative R&D on Science and Technology Program and by the Photon Frontier Network Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank M. Das for the development of cryogenic clocks, N. Nemitz and K. Gibble for careful reading of the manuscript and for useful comments, and M. Musha for the loan of a phase-locked loop circuit for the clock laser.

Author information

Authors and Affiliations

Authors

Contributions

T.T., M.T. and I.U. operated the clocks at UTokyo and RIKEN and analysed data. T.A. and A.Y. were responsible for the fibre link and M.T. and N.O. for the clock lasers. Y.K. evaluated the tidal perturbation. B.M. supervised the spirit-levelling measurements. Y.K., B.M., H.M. and H.K. discussed the geodetic applications of a quantum benchmark. T.T., Y.K. and H.K. wrote the manuscript. H.K. planned and supervised the experiments. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hidetoshi Katori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takano, T., Takamoto, M., Ushijima, I. et al. Geopotential measurements with synchronously linked optical lattice clocks. Nature Photon 10, 662–666 (2016). https://doi.org/10.1038/nphoton.2016.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing