Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nanoscale combing technique for the large-scale assembly of highly aligned nanowires

Abstract

The controlled assembly of nanowires is a key challenge in the development of a range of bottom-up devices1,2. Recent advances2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 in the post-growth assembly of nanowires and carbon nanotubes have led to alignment ratios of 80–95% for a misalignment angle of ±5° (refs 5, 12, 13, 14) and allowed various multiwire devices to be fabricated6,10,11,12,13,19. However, these methods still create a significant number of crossing defects, which restricts the development of device arrays and circuits based on single nanowires/nanotubes. Here, we show that a nanocombing assembly technique, in which nanowires are anchored to defined areas of a surface and then drawn out over chemically distinct regions of the surface, can yield arrays with greater than 98.5% of the nanowires aligned to within ±1° of the combing direction. The arrays have a crossing defect density of 0.04 nanowires per µm and efficient end registration at the anchoring/combing interface. With this technique, arrays of single-nanowire devices are tiled over chips and shown to have reproducible electronic properties. We also show that nanocombing can be used for laterally deterministic assembly, to align ultralong (millimetre-scale) nanowires to within ±1° and to assemble suspended and crossed nanowire arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics and demonstration of nanocombing.
Figure 2: Nanowire density control.
Figure 3: Nanowire device arrays.
Figure 4: Nanocombing applications.

Similar content being viewed by others

References

  1. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  2. Wang, M. C. P. & Gates, B. D. Directed assembly of nanowires. Mater. Today 12, 34–43 (May, 2009).

    Article  Google Scholar 

  3. Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    Article  CAS  Google Scholar 

  4. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  5. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  6. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).

    Article  CAS  Google Scholar 

  7. Hangarter, C. M. & Myung, N. V. Magnetic alignment of nanowires. Chem. Mater. 17, 1320–1324 (2005).

    Article  CAS  Google Scholar 

  8. Tao, A. et al. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003).

    Article  CAS  Google Scholar 

  9. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

    Article  CAS  Google Scholar 

  10. Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    Article  CAS  Google Scholar 

  11. Javey, A., Nam, S., Friedman, R. S., Yan, H. & Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007).

    Article  CAS  Google Scholar 

  12. Yerushalmi, R., Jacobson, Z. A., Ho, J. C., Fan, Z. & Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91, 203104 (2007).

  13. Fan, Z. et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008).

    Article  CAS  Google Scholar 

  14. Yu, G., Cao, A. & Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2, 372–377 (2007).

    Article  CAS  Google Scholar 

  15. Li, M. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech. 3, 88–92 (2008).

    Article  CAS  Google Scholar 

  16. Fan, Z. et al. Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21, 3730–3743 (2009).

    Article  CAS  Google Scholar 

  17. Freer, E. M., Grachev, O., Duan, X., Martin, S. & Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature Nanotech. 5, 525–530 (2010).

    Article  CAS  Google Scholar 

  18. Nam, S-W. Assembly and Integration of Nanowires and Grapheme for Nanoelectronics and Nanobiotechnology Ch. 2 (Harvard Univ. Press, 2011).

  19. Ishikawa, F. N. et al. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 3, 73–79 (2009).

    Article  CAS  Google Scholar 

  20. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    Article  CAS  Google Scholar 

  21. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  CAS  Google Scholar 

  22. Michalet, X. et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277, 1518–1523 (1997).

    Article  CAS  Google Scholar 

  23. Cui, Y., Zhong, Z., Wang, D., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  24. Cai, L., Bahr, J. L., Yao, Y. & Tour, J. M. Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers. Chem. Mater. 14, 4235–4241 (2002).

    Article  CAS  Google Scholar 

  25. Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011).

    Article  CAS  Google Scholar 

  26. Xiang, J., Lu, W., Hu, Y., Yan, H. & Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  27. Park, W. I., Zheng, G., Jiang, X., Tian, B. & Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 8, 3004–3009 (2008).

    Article  CAS  Google Scholar 

  28. Yaman, M. et al. Arrays of indefinitely long uniform nanowires and nanotubes. Nature Mater. 10, 494–501 (2011).

    Article  CAS  Google Scholar 

  29. Tsivion, D., Schvartzman, M., Popovitz-Biro, R., von Huth, P. & Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333, 1003–1007 (2011).

    Article  CAS  Google Scholar 

  30. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  31. Husain, A. et al. Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240–1242 (2003).

    Article  CAS  Google Scholar 

  32. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  33. Feng, X. L., He, R., Yang, P. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Ellenbogen, S. Das and J. Klemic for helpful discussion, and J. Huang for modification of the nanocombing assembly tool. C.M.L. acknowledges support of this work from a contract from the MITRE Corporation (awards 92007 and 92009) and a National Security Science and Engineering Faculty Fellow award (N00244-09-1-0078).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and C.M.L. designed the experiments. J.Y. performed the experiments and data analysis. H.Y. helped in nanowire synthesis and device fabrication. J.Y. and C.M.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Yan, H. & Lieber, C. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nature Nanotech 8, 329–335 (2013). https://doi.org/10.1038/nnano.2013.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.55

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing