Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Programmable chemical controllers made from DNA

Abstract

Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA realization of a formal CRN.
Figure 2: DNA gate production.
Figure 3: Testing fundamental reaction types.
Figure 4: Tuning the rate of the bimolecular reaction A + B → C.
Figure 5: Consensus network.

Similar content being viewed by others

References

  1. Drexler, K. E. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl Acad. Sci. USA 78, 5275–5278 (1981).

    Article  CAS  Google Scholar 

  2. Koo, O. M., Rubinstein, I. & Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: NBM 1, 193–212 (2005).

    Article  CAS  Google Scholar 

  3. Hess, H. Engineering applications of biomolecular motors. Annu. Rev. Biomed. Eng. 13, 429–450 (2011).

    Article  CAS  Google Scholar 

  4. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  5. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  6. Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  Google Scholar 

  7. Seelig, G., Yurke, B. & Winfree, E. Catalyzed relaxation of a metastable DNA fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006).

    Article  CAS  Google Scholar 

  8. Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    Article  CAS  Google Scholar 

  9. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  10. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    Article  CAS  Google Scholar 

  11. Levy, M. & Ellington, A. D. Exponential growth by cross-catalytic cleavage of deoxyribozymogens. Proc. Natl Acad. Sci. USA 100, 6416–6421 (2003).

    Article  CAS  Google Scholar 

  12. Cardelli, L. Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23, 247–271 (2013).

    Article  Google Scholar 

  13. Oishi, K. & Klavins, E. Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5, 252–260 (2011).

    Article  CAS  Google Scholar 

  14. Phillips, A. & Cardelli, L. A programming language for composable DNA circuits. J. R. Soc. Interface 6, S419–S436 (2009).

    Article  CAS  Google Scholar 

  15. Qian, L., Soloveichik, D. & Winfree, E. Efficient Turing-universal computation with DNA polymers. DNA Comput. Mol. Program. 6518, 123–140 (2011).

    Article  Google Scholar 

  16. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article  CAS  Google Scholar 

  17. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article  CAS  Google Scholar 

  18. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  Google Scholar 

  19. Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

    Article  CAS  Google Scholar 

  20. Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based molecular automaton. Nature Biotechnol. 21, 1069–1074 (2003).

    Article  CAS  Google Scholar 

  21. Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    Article  CAS  Google Scholar 

  22. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).

    Article  Google Scholar 

  23. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).

    Article  Google Scholar 

  24. Willner, I., Shlyahovsky, B., Zayats, M. & Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev. 37, 1153–1165 (2008).

    Article  CAS  Google Scholar 

  25. Ran, T., Kaplan, S. & Shapiro, E. Molecular implementation of simple logic programs. Nature Nanotech. 4, 642–648 (2009).

    Article  CAS  Google Scholar 

  26. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  27. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    Article  CAS  Google Scholar 

  28. Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotech. 6, 166–169 (2011).

    Article  CAS  Google Scholar 

  29. Muscat, R. A., Bath, J. & Turberfield, A. J. A programmable molecular robot. Nano Lett. 11, 982–987 (2011).

    Article  CAS  Google Scholar 

  30. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  31. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  32. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  33. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  34. Hemphill, J. & Deiters, A. DNA Computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc. 135, 10512–10518 (2013).

    Article  CAS  Google Scholar 

  35. Arkin, A. & Ross, J. Computational functions in biochemical reaction networks. Biophys. J. 67, 560–578 (1994).

    Article  CAS  Google Scholar 

  36. Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford Univ. Press, 1998).

    Google Scholar 

  37. Magnasco, M. O. Chemical kinetics is Turing universal. Phys. Rev. Lett. 78, 1190–1193 (1997).

    Article  CAS  Google Scholar 

  38. Senum, P. & Riedel, M. Rate-independent constructs for chemical computation. PLoS ONE 6, e21414 (2011).

    Article  CAS  Google Scholar 

  39. Soloveichik, D., Cook, M., Winfree, E. & Bruck, J. Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008).

    Article  Google Scholar 

  40. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  41. Peterson, J. L. Petri Net Theory and the Modeling of Systems 290 (Prentice-Hall, 1981).

    Google Scholar 

  42. Zhang, D. Y. & Winfree, E. Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Res. 38, 4182–4197 (2010).

    Article  CAS  Google Scholar 

  43. Lin, C. et al. In vivo cloning of artificial DNA nanostructures. Proc. Natl Acad. Sci. USA 105, 17626–17631 (2008).

    Article  CAS  Google Scholar 

  44. Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Högberg, B. Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides. Nature Methods 10, 647–652 (2013).

    Article  CAS  Google Scholar 

  45. Chen, X., Briggs, N., McLain, J. R. & Ellington, A. D. Stacking nonenzymatic circuits for high signal gain. Proc. Natl Acad. Sci. USA 110, 5386–5391 (2013).

    Article  CAS  Google Scholar 

  46. Angluin, D., Aspnes, J. & Eisenstat, D. A simple population protocol for fast robust approximate majority. Distrib. Comput. 21, 87–102 (2008).

    Article  Google Scholar 

  47. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  48. Lakin, M. R., Youssef, S., Cardelli, L. & Phillips, A. Abstractions for DNA circuit design. J. R. Soc. Interface 9, 470–486 (2012).

    Article  Google Scholar 

  49. Cardelli, L. & Csikász-Nagy, A. The cell cycle switch computes approximate majority. Sci. Rep. 2, 656 (2012).

    Article  Google Scholar 

  50. Zhang, D. & Seelig, G. in DNA Computing and Molecular Programming (eds Sakakibara, Y. & Mi, Y.) Vol. 6518, 176–186 (Lecture Notes in Computer Science, Springer, 2011).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank E. Winfree, E. Klavins and D.Y. Zhang for discussions and comments on the manuscript. This work was supported by the National Science Foundation (grant NSF-CCF 1117143 to G.S. and D.S.). G.S. was supported by a Burroughs Wellcome Career Award at the Scientific Interface. D.S. was supported by an NIGMS Systems Biology Center grant (P50 GM081879).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the experiments and co-wrote the paper. Y-J.C. performed the wetlab experiments. N.D. and A.P. performed computational experiments.

Corresponding authors

Correspondence to David Soloveichik or Georg Seelig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4054 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YJ., Dalchau, N., Srinivas, N. et al. Programmable chemical controllers made from DNA. Nature Nanotech 8, 755–762 (2013). https://doi.org/10.1038/nnano.2013.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing