Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Piezoelectric nanoribbons for monitoring cellular deformations

Abstract

Methods for probing mechanical responses of mammalian cells to electrical excitations can improve our understanding of cellular physiology and function1,2,3. The electrical response of neuronal cells to applied voltages has been studied in detail4, but less is known about their mechanical response to electrical excitations. Studies using atomic force microscopes (AFMs) have shown that mammalian cells exhibit voltage-induced mechanical deflections at nanometre scales5,6, but AFM measurements can be invasive and difficult to multiplex. Here we show that mechanical deformations of neuronal cells in response to electrical excitations can be measured using piezoelectric PbZrxTi1-xO3 (PZT) nanoribbons, and we find that cells deflect by 1 nm when 120 mV is applied to the cell membrane. The measured cellular forces agree with a theoretical model in which depolarization caused by an applied voltage induces a change in membrane tension, which results in the cell altering its radius so that the pressure remains constant across the membrane5,7. We also transfer arrays of PZT nanoribbons onto a silicone elastomer and measure mechanical deformations on a cow lung that mimics respiration. The PZT nanoribbons offer a minimally invasive and scalable platform for electromechanical biosensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interfacing of PZT nanoribbons with cultured neuronal cells.
Figure 2: Biocompatibility of PZT nanoribbons with neuron-like cells.
Figure 3: Quantifying the sensitivity of PZT nanoribbons.
Figure 4: Probing cellular mechanics using PZT nanoribbons.
Figure 5: Biointerfacing of PZT nanoribbons with multicellular cow lung tissue.

References

  1. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    Article  CAS  Google Scholar 

  2. Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008).

    Article  CAS  Google Scholar 

  3. Vaziri, A. & Gopinath, A. Cell and biomolecular mechanics in silico. Nature Mater. 7, 15–23 (2008).

    Article  CAS  Google Scholar 

  4. Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  5. Zhang, P. C., Keleshian, A. M. & Sachs, F. Voltage-induced membrane movement. Nature 413, 428–432 (2001).

    Article  CAS  Google Scholar 

  6. Kim, G. H., Kosterin, P., Obaid, A. L. & Salzberg, B. M. A mechanical spike accompanies the action potential in mammalian nerve terminals. Biophys. J. 92, 3122–3129 (2007).

    Article  CAS  Google Scholar 

  7. Lin, Y. & Freund, L. B. Forced detachment of a vesicle in adhesive contact with a substrate. Int. J. Solids Struct. 44, 1927–1938 (2007).

    Article  Google Scholar 

  8. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  Google Scholar 

  9. Zheng, J. et al. Tensile regulation of axonal elongation and initiation. J. Neurosci. 11, 1117–1125 (1991).

    Article  CAS  Google Scholar 

  10. Hill, B. C., Schubert, E. D., Nokes, M. A. & Michelson, R. P. Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential. Science 196, 426–428 (1977).

    Article  CAS  Google Scholar 

  11. Iwasa, K., Tasaki, I. & Gibbons, R. C. Swelling of nerve fibers associated with action potentials. Science 210, 338–339 (1980).

    Article  CAS  Google Scholar 

  12. Terakawa, S. Changes in intracellular pressure in squid giant axons associated with production of action potentials. Biochem. Biophys. Res. Commun. 114, 1006–1010 (1983).

    Article  CAS  Google Scholar 

  13. Todorov, A. T., Petrov, A. G. & Fendler, J. H. Flexoelectricity of charged and dipolar bilayer-lipid membranes studied by stroboscopic interferometry. Langmuir 10, 2344–2350 (1994).

    Article  CAS  Google Scholar 

  14. Petrov, A. G., Miller, B. A., Hristova, K. & Usherwood, P. N. Flexoelectric effects in model and native membranes containing ion channels. Eur. Biophys. J. 22, 289–300 (1993).

    CAS  Google Scholar 

  15. Nonnenmann, S. S., Leaffer, O. D., Gallo, E. M., Coster, M. T. & Spanier, J. E. Finite curvature-mediated ferroelectricity. Nano Lett. 10, 542–546 (2010).

    Article  CAS  Google Scholar 

  16. Breneman, K. D., Brownell, W. E. & Rabbitt, R. D. Hair cell bundles: flexoelectric motors of the inner ear. PLoS ONE 4, e5201 (2009).

    Article  Google Scholar 

  17. Harland, B., Brownell, W. E., Spector, A. A. & Sun, S. X. Voltage-induced bending and electromechanical coupling in lipid bilayers. Phys. Rev. E 81, 031907 (2010).

    Article  Google Scholar 

  18. Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    Article  CAS  Google Scholar 

  19. Brownell, W. E., Qian, F. & Anvari, B. Cell membrane tethers generate mechanical force in response to electrical stimulation. Biophys. J. 99, 845–852 (2010).

    Article  CAS  Google Scholar 

  20. Bausch, A. R., Ziemann, F., Boulbitch, A. A., Jacobson, K. & Sackmann, E. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038–2049 (1998).

    Article  CAS  Google Scholar 

  21. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    Article  CAS  Google Scholar 

  22. Gopal, A. et al. Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation. Biomed. Microdev. 10, 611–622 (2008).

    Article  CAS  Google Scholar 

  23. Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y. & Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010).

    Article  CAS  Google Scholar 

  24. Xie, C. et al. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 10, 4020–4024 (2010).

    Article  CAS  Google Scholar 

  25. Hallstrom, W. et al. Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett. 10, 782–787 (2010).

    Article  CAS  Google Scholar 

  26. Nguyen, T. D. et al. Wafer-scale nanopatterning and translation into high-performance piezoelectric nanowires. Nano Lett. 10, 4595–4599 (2010).

    Article  CAS  Google Scholar 

  27. Qi, Y. et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10, 524–528 (2010).

    Article  CAS  Google Scholar 

  28. Xu, S., Hansen, B. J. & Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Commun. 1, 93 (2010).

    Article  Google Scholar 

  29. Greene, L. A. & Tischler, A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth-factor. Proc. Natl Acad. Sci. USA 73, 2424–2428 (1976).

    Article  CAS  Google Scholar 

  30. Stauffer, E. K. & Ziegler, R. J. Loss of functional voltage-gated sodium channels in persistent mumps virus-infected PC12 cells. J. Gen. Virol. 70, 749–754 (1989).

    Article  CAS  Google Scholar 

  31. Duval, F. F. C. et al. Characterisation of PZT thin film micro-actuators using a silicon micro-force sensor. Sens. Actuat. A 133, 35–44 (2007).

    Article  CAS  Google Scholar 

  32. Mosbacher, J., Langer, M., Horber, J. K. & Sachs, F. Voltage-dependent membrane displacements measured by atomic force microscopy. J. Gen. Physiol. 111, 65–74 (1998).

    Article  CAS  Google Scholar 

  33. Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011).

    Article  CAS  Google Scholar 

  34. Feng, X. et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5, 3326–3332 (2011).

    Article  CAS  Google Scholar 

  35. Li, Z., Zhu, G., Yang, R., Wang, A. C. & Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534–2537 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Verma and N. Yao for useful discussions and advice, and G. Poirier, S. Xu, T. Liu, N.T. Jafferis and X. Xu for their help with technical issues. The authors thank Lynn W. Enquist for contributing reagents. The authors acknowledge use of the PRISM Imaging and Analysis Center, which is supported by the NSF MRSEC Program via the Princeton Center for Complex Materials (no. DMR-0819860). T.K. was supported by a National Science Foundation Graduate Student Research Fellowship (DGE-0646086). P.K.P acknowledges support from the Army Research Office (no. W911NF-11-1-0494), and M.C.M. acknowledges support from the Defense Advanced Research Projects Agency (no. N66001-10-1-2012) and the Army Research Office (no. W911NF-11-1-0397).

Author information

Authors and Affiliations

Authors

Contributions

T.D.N., J.M.N. and M.C.M. devised the studies. T.D.N., N.D., J.M.N., M.J.B. and M.C.M. designed the experiments. T.D.N., N.D. and T.K. performed the experiments. P.K.P. developed the theoretical model. T.D.N., N.D., J.M.N., T.K., P.K.P., M.J.B. and M.C.M. wrote the paper.

Corresponding author

Correspondence to Michael C. McAlpine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1993 kb)

Supplementary movie

Supplementary movie (AVI 20538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Deshmukh, N., Nagarah, J. et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nature Nanotech 7, 587–593 (2012). https://doi.org/10.1038/nnano.2012.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.112

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research