Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting

Abstract

Manipulating and dispensing liquids on the micrometre- and nanoscale is important in biotechnology and combinatorial chemistry, and also for patterning inorganic, organic and biological inks. Several methods for dispensing liquids exist, but many require complicated electrodes and high-voltage circuits. Here, we show a simple way to draw attolitre liquid droplets from one or multiple sessile drops or liquid film reservoirs using a pyroelectrohydrodynamic dispenser. Local pyroelectric forces, which are activated by scanning a hot tip or an infrared laser beam over a lithium niobate substrate, draw liquid droplets from the reservoir below the substrate, and deposit them on the underside of the lithium niobate substrate. The shooting direction is altered by moving the hot tip or laser to form various patterns at different angles and locations. Our system does not require electrodes, nozzles or circuits, and is expected to have many applications in biochemical assays and various transport and mixing processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pyroelectrohydrodynamic dispenser.
Figure 2: Functionalities of the dispensing gun.
Figure 3: Additional functionalities.
Figure 4: Dispensing nanolitre droplets for liquid patterning.
Figure 5: Nanoscale droplets.
Figure 6: Daughter droplets of specific suspensions.

Similar content being viewed by others

References

  1. Mugele, F. & Baret, J.-C. Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005).

    Article  CAS  Google Scholar 

  2. Jiao, Z., Huang, X., Nguyen, N.-T. & Abgrall, P. Thermocapillary actuation of droplet in a planar microchannel. Microfluid. Nanofluid. 5, 205–214 (2008).

    Article  CAS  Google Scholar 

  3. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  4. Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–60 (1999).

    Article  CAS  Google Scholar 

  5. Kataoka, D. E. & Troian, S. M. Patterning liquid flow on the microscopic scale. Nature 402, 794–797 (1999).

    Article  CAS  Google Scholar 

  6. Aronov, D., Rosenman, G., Karlov, A. & Shashkin, A. Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification. Appl. Phys. Lett. 88, 163902 (2006).

    Article  Google Scholar 

  7. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  8. Velev, O. D., Prevo, B. G. & Bhatt, K. H. On-chip manipulation of free droplets. Nature 426, 515–516 (2003).

    Article  CAS  Google Scholar 

  9. Choi, J. et al. Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Appl. Phys. Lett. 93, 193508 (2008).

    Article  Google Scholar 

  10. Choi, W.-K. et al. Nano-liter size droplet dispenser using electrostatic manipulation technique. Sens. Actuat. A 136, 484–490 (2007).

    Article  CAS  Google Scholar 

  11. Lee, J.-G. et al. Electrohydrodynamic (EHD) dispensing of nanoliter DNA droplets for microarrays. Biosens. Bioelectron. 21, 2240–2247 (2006).

    Article  CAS  Google Scholar 

  12. Strobl, C. J., von Guttenberg, Z. & Wixforth, A. Nano- and pico-dispensing of fluids on planar substrates using SAW. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1432–1436 (2004).

    Article  Google Scholar 

  13. Ahmed, R. & Jones, T. B. Optimized liquid DEP droplet dispensing. J. Micromech. Microeng. 17, 1052–1058 (2007).

    Article  Google Scholar 

  14. de Heij, B . et al. Highly parallel dispensing of chemical and biological reagents. Anal Bioanal Chem. 378, 119–122 (2004).

    Article  CAS  Google Scholar 

  15. Park, J. U. et al. High-resolution electrohydrodynamic jet printing. Nature Mater. 6, 781–789 (2007).

    Google Scholar 

  16. Loha, O. Y. et al. Electric field-induced direct delivery of proteins by a nanofountain probe. Proc. Natl Acad. Sci. USA 105, 16438–16443 (2008).

    Article  Google Scholar 

  17. Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Phys. 4, 149–154 (2008).

    Article  CAS  Google Scholar 

  18. Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).

    Article  Google Scholar 

  19. Marchand, G., Delattre, C., Campagnolo, R., Pouteau, P. & Ginot, F. Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets. Anal. Chem. 77, 5189–5195 (2005).

    Article  CAS  Google Scholar 

  20. Manz, A. & Becker, H. Microsystem Technology in Chemistry and Life Sciences (Springer, 1998).

  21. Bruin, G. J. Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis 21, 3931–3951 (2000).

    Article  CAS  Google Scholar 

  22. Taniguchi, T., Torii, T. & Higuchi, T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip 2, 19–23 (2002).

    Article  CAS  Google Scholar 

  23. Pollack, M. G., Shenderov, A. D. & Fair, R. B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002).

    Article  CAS  Google Scholar 

  24. Cho, S. K., Moon, H. & Kim, C. J. Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12, 70–80 (2003).

    Article  Google Scholar 

  25. Schaerli, Y. & Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. BioSyst. 5, 1392–1404 (2009).

    Article  CAS  Google Scholar 

  26. Hung, L. H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6, 174–178 (2006).

    Article  CAS  Google Scholar 

  27. Guttenberg, Z. et al. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5, 308–317 (2005).

    Article  CAS  Google Scholar 

  28. Basaran, O. A small-scale free surface flows with breakup: drop formation and emerging applications. AICHE J. 48, 9 (2002).

    Article  Google Scholar 

  29. Suryo, R. & Basaran, O. A. Dripping of a liquid from a tube in the absence of gravity. Phys. Rev. Lett. 96, 034504 (2006).

    Article  Google Scholar 

  30. Casner, A. & Delville, J.-P. Laser-induced hydrodynamic instability of fluid interfaces. Phys. Rev. Lett. 90, 144503 (2003).

    Article  Google Scholar 

  31. Ondarcuhu, T. et al. Controlled deposition of nanodroplets on a surface by liquid nanodispensing: application to the study of the evaporation of femtoliter sessile droplets. Eur. Phys. J. Special Topics 166, 15–20 (2009).

    Article  Google Scholar 

  32. Cherney, L. T. Structure of Taylor cone-jets: limit of low flow rates. J. Fluid Mech. 378, 167–196 (1999).

    Article  CAS  Google Scholar 

  33. Chen, C.-H., Saville, D. A. & Aksay, I. A. Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89, 124103 (2006).

    Article  Google Scholar 

  34. Chen, A. U. & Basaran, O. A. A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 14, L1–L4 (2002).

    Article  CAS  Google Scholar 

  35. Ferraro, P., Grilli, S., Miccio, L. & Vespini, V. Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets. Appl. Phys. Lett. 92, 213107 (2008).

    Article  Google Scholar 

  36. Grilli, S. & Ferraro, P. Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals. Appl. Phys. Lett. 92, 232902 (2008).

    Article  Google Scholar 

  37. Miccio, L. et al. Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. Opt. Express 17, 2487–2499 (2009).

    Article  CAS  Google Scholar 

  38. Grilli, S. et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. Opt. Express 16, 8084–8093 (2008).

    Article  CAS  Google Scholar 

  39. Miccio, L., Paturzo, M., Grilli, S., Vespini, V. & Ferraro, P. Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting. Opt. Lett. 34, 1075–1077 (2009).

    Article  Google Scholar 

  40. Rosenblum, B., Bräunlich, P. & Carrico, J. P. Thermally stimulated field emission from pyroelectric LiNbO3 . Appl. Phys. Lett. 25, 17–19 (1974).

    Article  CAS  Google Scholar 

  41. Maeda, N., Israelachvili, J. N. & Kohonen, M. M. Evaporation and instabilities of microscopic capillary bridges. Proc. Natl Acad. Sci. USA 100, 803–808 (2003).

    Article  CAS  Google Scholar 

  42. Wohlhuter, F. K. & Basaran, O. A. Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 235, 481–510 (1992).

    Article  CAS  Google Scholar 

  43. Harris, M. T. & Basaran, O. A. Equilibrium shapes and stability of nonconducting pendand drops surrounded by a conducting fluid in an electric field. J. Colloid Interface Sci. 170, 308–319 (1995).

    Article  CAS  Google Scholar 

  44. Ferraro, P., Grilli, S. & De Natale, P. Ferroelectric Crystals for Photonic Applications, Including Nanoscale Fabrication and Characterization Techniques, Series in Materials Science, Vol. 91 (Springer, 2008).

  45. Taly, V., Kelly, B. T. & Griffiths, A. D. Droplets as microreactors for high-throughput biology. ChemBioChem 8, 263–272 (2007).

    Article  CAS  Google Scholar 

  46. Griffiths, A. D. & Tawfik, D. S. Miniaturising the laboratory in emulsion droplets. Trends Biotechnol. 24, 9 (2006).

    Article  Google Scholar 

  47. Song, H., Chen, D. L. & Ismagilov, F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from grant CNR-RSTL (Ricerca Spontanea a Tema Libero) no. 3004 ‘Realizzazione e caratterizzazione di nanostrutture ordinate in cristalli ferroelettrici per la fotonica e studio delle funzionalità’ and Grant ‘Intesa di programma MIUR/CNR per il Mezzogiorno’.

Author information

Authors and Affiliations

Authors

Contributions

P.F. and S.G. conceived and designed the experiments. S.C. and V.V. performed the experiments and analysed the data. M.P. and S.C. performed numerical simulations. P.F. and S.G. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to P. Ferraro or S. Grilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 675 kb)

Supplementary information

Supplementary movie 1 (AVI 1166 kb)

Supplementary information

Supplementary movie 2 (AVI 7033 kb)

Supplementary information

Supplementary movie 3 (AVI 18431 kb)

Supplementary information

Supplementary movie 4 (AVI 4748 kb)

Supplementary information

Supplementary movie 5 (AVI 796 kb)

Supplementary information

Supplementary movie 6 (AVI 2845 kb)

Supplementary information

Supplementary movie 7 (AVI 3027 kb)

Supplementary information

Supplementary movie 8 (AVI 11432 kb)

Supplementary information

Supplementary movie 9 (AVI 8785 kb)

Supplementary information

Supplementary movie 10 (AVI 12323 kb)

Supplementary information

Supplementary movie 11 (AVI 7603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraro, P., Coppola, S., Grilli, S. et al. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nature Nanotech 5, 429–435 (2010). https://doi.org/10.1038/nnano.2010.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing