Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography

A Corrigendum to this article was published on 06 October 2017

This article has been updated

Abstract

Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO4 nanorods assembled in an electrically modulated liquid-crystalline phase. We measure Eu3+ emission spectra for the three main optical configurations (σ, π and α, depending on the direction of observation and the polarization axes) and use them as a reference for the nanorod orientation analysis. Based on the fact that flowing nanorods tend to orient along the shear strain profile, we use this orientation analysis to measure the local shear rate in a flowing liquid. The potential of this approach is then demonstrated through tomographic imaging of the shear rate distribution in a microfluidic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarized photoluminescence of LaPO4:Eu nanorods.
Figure 2: Stress-optical measurements of a flowing nanorod suspension.
Figure 3: Tomographic stress-optical analysis of a microfluidic system.

Similar content being viewed by others

Change history

  • 26 September 2017

    In the version of this Article originally published, the label in Fig. 1d that said 'σ = π' was incorrect, and should have said 'α = π'. This has been corrected in the online version. This change does not affect the results of the paper.

References

  1. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  2. Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    Article  CAS  Google Scholar 

  3. Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E. T. & Goldman, Y. E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  4. Ohmachi, M. et al. Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl Acad. Sci. USA 109, 5294–5298 (2012).

    Article  CAS  Google Scholar 

  5. Wang, Y. & Herron, N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991).

    Article  CAS  Google Scholar 

  6. McIntyre, C. R. & Sham, L. J. Theory of luminescence polarization anisotropy in quantum wires. Phys. Rev. B 45, 9443–9446 (1992).

    Article  CAS  Google Scholar 

  7. Califano, M. & Zunger, A. Anisotropy of interband transitions in InAs quantum wires: an atomistic theory. Phys. Rev. B 70, 165317 (2004).

    Article  Google Scholar 

  8. Chen, H.-Y., Yang, Y.-C., Lin, H.-W., Chang, S.-C. & Gwo, S. Polarized photoluminescence from single GaN nanorods: effects of optical confinement. Opt. Express 16, 13465–13475 (2008).

    Article  CAS  Google Scholar 

  9. Binnemans, K. & Görller-Walrand, C. C. A. Application of the Eu3+ ion for site symmetry determination. J. Rare Earth. 14, 173–180 (1996).

    Google Scholar 

  10. Hänninen, P. H., Ala-Kleme, T. & Hèarmèa, H. Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects (Springer, 2011).

    Book  Google Scholar 

  11. Sayre, E. V. & Freed, S. Spectra and quantum states of the europic ion in crystals. II. Fluorescence and absorption spectra of single crystals of europic ethylsulfate nonahydrate. J. Chem. Phys. 24, 1213–1219 (1956).

    Article  CAS  Google Scholar 

  12. Brecher, C., Samelson, H., Lempicki, A., Riley, R. & Peters, T. Polarized spectra and crystal-field parameters of Eu+3 in YVO4 . Phys. Rev. 155, 178–187 (1967).

    Article  CAS  Google Scholar 

  13. DeShazer, L. G. & Dieke, G. H. Spectra and energy levels of Eu3+ in LaCl3 . J. Chem. Phys. 38, 2190–2199 (1963).

    Article  CAS  Google Scholar 

  14. Brecher, C. Europium in the ultraphosphate lattice: polarized spectra and structure of EuP5O14 . J. Chem. Phys. 61, 2297–2315 (1974).

    Article  CAS  Google Scholar 

  15. Kim, J. et al. LaPO4 mineral liquid crystalline suspensions with outstanding colloidal stability for electro-optical applications. Adv. Funct. Mater. 22, 4949–4956 (2012).

    Article  CAS  Google Scholar 

  16. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  17. Kim, J. et al. Optimized combination of intrinsic and form birefringence in oriented LaPO4 nanorod assemblies. Appl. Phys. Lett. 105, 061102 (2014).

    Article  Google Scholar 

  18. Galyametdinov, Y. G. et al. Polarized luminescence from aligned samples of nematogenic lanthanide complexes. Adv. Mater. 20, 252–257 (2008).

    Article  CAS  Google Scholar 

  19. Bretherton, F. P. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284–304 (1962).

    Article  Google Scholar 

  20. Cerf, R. & Scheraga, H. A. Flow birefringence in solutions of macromolecules. Chem. Rev. 51, 185–261 (1952).

    Article  CAS  Google Scholar 

  21. Fisher, A. B., Chien, S., Barakat, A. I. & Nerem, R. M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L529–L533 (2001).

    Article  CAS  Google Scholar 

  22. Baroud, C. N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).

    Article  CAS  Google Scholar 

  23. Oddy, M. H., Santiago, J. G. & Mikkelsen, J. C. Electrokinetic instability micromixing. Anal. Chem. 73, 5822–5832 (2001).

    Article  CAS  Google Scholar 

  24. El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  25. Lindken, R., Rossi, M., Große, S. & Westerweel, J. Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab Chip 9, 2551–2567 (2009).

    Article  CAS  Google Scholar 

  26. Lee, S. J. & Kim, S. Advanced particle-based velocimetry techniques for microscale flows. Microfluid. Nanofluid. 6, 577–588 (2009).

    Article  CAS  Google Scholar 

  27. Fang, Y.-P. et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 125, 16025–16034 (2003).

    Article  CAS  Google Scholar 

  28. Kim, J., Peretti, J., Lahlil, K., Boilot, J.-P. & Gacoin, T. Optically anisotropic thin films by shear-oriented assembly of colloidal nanorods. Adv. Mater. 25, 3295–3300 (2013).

    Article  CAS  Google Scholar 

  29. Lodge, A. S. Variation of flow birefringence with stress. Nature 176, 838–839 (1955).

    Article  CAS  Google Scholar 

  30. Philippoff, W. Flow-birefringence and stress. Nature 178, 811–812 (1956).

    Article  CAS  Google Scholar 

  31. Philippoff, W. Stress-optical analysis of fluids. Rheol. Acta 1, 371–375 (1961).

    Article  Google Scholar 

  32. Sutera, S. P. & Wayland, H. Quantitative analysis of two-dimensional flow by means of streaming birefringence. J. Appl. Phys. 32, 721–730 (1961).

    Article  Google Scholar 

  33. Fuller, G. G. Optical rheometry. Annu. Rev. Fluid Mech. 22, 387–417 (1990).

    Article  Google Scholar 

  34. Cressely, R., Hocquart, R., Wydro, T. & Decruppe, J. P. Numerical evaluation of extinction angle and birefringence in various directions as a function of velocity gradient. Rheol. Acta 24, 419–426 (1985).

    Article  CAS  Google Scholar 

  35. Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge Univ. Press, 2006).

    Google Scholar 

  36. Ober, T., Haward, S., Pipe, C., Soulages, J. & McKinley, G. Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol. Acta 52, 529–546 (2013).

    Article  CAS  Google Scholar 

  37. Elschner, J. & Pozrikidis, C. Boundary integral and singularity methods for linearized viscous flow. J. Appl. Math. Mech. 74, 104–104 (1994).

    Google Scholar 

  38. Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Frot and N. Taccoen for the fabrication of microfluidic channels, C. Henry de Villeneuve for atomic force microscopy and A. Agrawal for graphics. This research was partially supported by LASERLAB-EUROPE (grant agreement no. 284464 from the European Community's Seventh Framework Programme). G.A., E.F. and C.N.B. acknowledge funding by the ERC under grant agreement 278248 (Multicell).

Author information

Authors and Affiliations

Authors

Contributions

J.K., J.-P.B., J.P. and T.G. developed the concept. J.K. performed synthesis, fabrication and characterizations. S.M. performed computational analysis. J.K. and M.H. performed polarized photoluminescence measurements. J.K., E.F., M.H., E.C. and G.A. performed microfluidic experiments. L.M. and M.H. prepared optical set-ups. J.K., L.M. and J.P. performed polarization analysis. C.N.B. and A.M.B. provided advice regarding the research. T.G. and J.P. supervised the research. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Jongwook Kim or Thierry Gacoin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Michelin, S., Hilbers, M. et al. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography. Nature Nanotech 12, 914–919 (2017). https://doi.org/10.1038/nnano.2017.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing