Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Host–guest chemistry with water-soluble gold nanoparticle supraspheres

This article has been updated

Abstract

The uptake of molecular guests, a hallmark of the supramolecular chemistry of cages and containers, has yet to be documented for soluble assemblies of metal nanoparticles. Here we demonstrate that gold nanoparticle-based supraspheres serve as a host for the hydrophobic uptake, transport and subsequent release of over two million organic guests, exceeding by five orders of magnitude the capacities of individual supramolecular cages or containers and rivalling those of zeolites and metal–organic frameworks on a mass-per-volume basis. The supraspheres are prepared in water by adding hexanethiol to polyoxometalate-protected 4 nm gold nanoparticles. Each 200 nm assembly contains hydrophobic cavities between the estimated 27,400 gold building blocks that are connected to one another by nanometre-sized pores. This gives a percolated network that effectively absorbs large numbers of molecules from water, including 600,000, 2,100,000 and 2,600,000 molecules (35, 190 and 234 g l−1) of para-dichorobenzene, bisphenol A and trinitrotoluene, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction of hex-SH with 1-protected 4 nm diameter Au NPs in water.
Figure 2: Cryo-TEM images and DLS data documenting the growth and shape of colloidal supraspheres.
Figure 3: PEG-S capping of 1-protected colloidal supraspheres in water and their disassembly on phase transfer to CH2Cl2.
Figure 4: Uptake and release of hydrophobic guests by colloidal supraspheres.
Figure 5: The hydrophobic cavities and interior pores of the colloidal supraspheres.

Similar content being viewed by others

Change history

  • 16 November 2016

    In the original version of this Article published online an error in production led to an incorrect chemical structure for citrate in Fig. 1a. This has been corrected in all versions of the Article.

References

  1. Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    Article  CAS  Google Scholar 

  2. Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    Article  CAS  Google Scholar 

  3. Ajami, D. & Rebek, J. More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013).

    Article  CAS  Google Scholar 

  4. Sato, S. et al. Fluorous nanodroplets structurally confined in an organopalladium sphere. Science 313, 1273–1276 (2006).

    Article  CAS  Google Scholar 

  5. Kopilevich, S., Müller, A. & Weinstock, I. A. Amplified rate acceleration by simultaneous up-regulation of multiple active sites in an endo-functionalized porous capsule. J. Am. Chem. Soc. 137, 12740–12743 (2015).

    Article  CAS  Google Scholar 

  6. Chmelik, C. & Kärger, J. In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 39, 4864–4884 (2010).

    Article  CAS  Google Scholar 

  7. Yang, S. et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat. Chem. 7, 121–129 (2015).

    Article  CAS  Google Scholar 

  8. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  9. Grego, A., Müller, A. & Weinstock, I. A. Stepwise-resolved thermodynamics of hydrophobic self-assembly. Angew. Chem. Int. Ed. 52, 8358–8362 (2013).

    Article  CAS  Google Scholar 

  10. Blokzijl, W. & Engberts, J. B. F. N. Hydrophobic effects. Opinions and facts. Angew. Chem. Int. Ed. Engl. 32, 1545–1579 (1993).

    Article  Google Scholar 

  11. Kopilevich, S., Gottlieb, H., Keinan-Adamsky, K., Müller, A. & Weinstock, I. A. The uptake and assembly of alkanes within a porous nanocapsule in water: new information about hydrophobic confinement. Angew. Chem. Int. Ed. 55, 4476–4481 (2016).

    Article  CAS  Google Scholar 

  12. Song, Z. et al. Nanovalved adsorbents for CH4 storage. Nano Lett. 16, 3309–3313 (2016).

    Article  CAS  Google Scholar 

  13. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Article  CAS  Google Scholar 

  14. Boal, A. K. et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000).

    Article  CAS  Google Scholar 

  15. Maye, M. M. et al. Mediator-template assembly of nanoparticles. J. Am. Chem. Soc. 127, 1519–1529 (2005).

    Article  CAS  Google Scholar 

  16. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  CAS  Google Scholar 

  17. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotech. 6, 580–587 (2011).

    Article  CAS  Google Scholar 

  18. Sánchez-Iglesias, A. et al. Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano 6, 11059–11065 (2012).

    Article  Google Scholar 

  19. Wang, T., LaMontagne, D., Lynch, J., Zhuang, J. & Cao, Y. C. Colloidal superparticles from nanoparticle assembly. Chem. Soc. Rev. 42, 2804–2823 (2013).

    Article  CAS  Google Scholar 

  20. Choueiri, R. M., Klinkova, A., Therien-Aubin, H., Rubinstein, M. & Kumacheva, E. Structural transitions in nanoparticle assemblies governed by competing nanoscale forces. J. Am. Chem. Soc. 135, 10262–10265 (2013).

    Article  CAS  Google Scholar 

  21. Wang, J. et al. Nucleation-controlled polymerization of nanoparticles into supramolecular structures. J. Am. Chem. Soc. 135, 11417–11420 (2013).

    Article  CAS  Google Scholar 

  22. Weinstock, I. A., Cowan, J. J., Barbuzzi, E. M. G., Zeng, H. & Hill, C. L. Equilibria between α and β isomers of keggin heteropolytungstates. J. Am. Chem. Soc. 121, 4608–4617 (1999).

    Article  CAS  Google Scholar 

  23. Wang, Y. et al. Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. J. Am. Chem. Soc. 131, 17412–17422 (2009).

    Article  CAS  Google Scholar 

  24. Wang, Y., Zeiri, O., Sharet, S. & Weinstock, I. A. Role of the alkali-metal cation size in the self-assembly of polyoxometalate-monolayer shells on gold nanoparticles. Inorg. Chem. 51, 7436–7438 (2012).

    Article  CAS  Google Scholar 

  25. Wang, Y. & Weinstock, I. A. Polyoxometalate-decorated nanoparticles. Chem. Soc. Rev. 41, 7479–7496 (2012).

    Article  CAS  Google Scholar 

  26. Zeiri, O., Wang, Y., Neyman, A., Stellacci, F. & Weinstock, I. A. Ligand-shell-directed assembly and depolymerization of patchy nanoparticles. Angew. Chem. Int. Ed. 52, 968–972 (2013).

    Article  CAS  Google Scholar 

  27. Wang, Y., Zeiri, O., Neyman, A., Stellacci, F. & Weinstock, I. A. Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles. ACS Nano 6, 629–640 (2012).

    Article  CAS  Google Scholar 

  28. Wang, Y., Zeiri, O., Meshi, L., Stellacci, F. & Weinstock, I. A. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals. Chem. Commun. 48, 9765–9767 (2012).

    Article  CAS  Google Scholar 

  29. West, A. R. Solid State Chemistry and its Applications (Wiley, 2014).

    Google Scholar 

  30. Zhao, Y. H., Abraham, M. H. & Zissimos, A. M. Fast calculation of van der waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 (2003).

    Article  CAS  Google Scholar 

  31. Mecozzi, S. & Rebek, J. J. Jr The 55 % solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    Article  CAS  Google Scholar 

  32. Ziv, A. et al. Flexible pores of a metal oxide-based capsule permit entry of comparatively larger organic guests. J. Am. Chem. Soc. 131, 6380–6382 (2009).

    Article  CAS  Google Scholar 

  33. Dalman, G. & Gorin, G. Ionization constant of hexanethiol from solubility measurements. J. Org. Chem. 26, 4682–4684 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.A.W thanks the Israel Science Foundation (190/13) and I.A.W. and F.S. thank the US Israel Binational Science Foundation (2008277) for support. We thank E. Gadot for TEM imaging and I. Willner for samples of TNT and RDX.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and O.Z. contributed equally to this work. I.A.W. initiated and directed the research, O.Z., Y.W., B.L.O., F.S. and I.A.W. designed the experiments, O.Z., Y.W., M.R. and B.L.O. carried out the experimental work, and O.Z., Y.W., B.L.O., F.S. and I.A.W. interpreted the experimental data. I.A.W. coordinated the writing of the manuscript with input from all authors.

Corresponding author

Correspondence to Ira A. Weinstock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zeiri, O., Raula, M. et al. Host–guest chemistry with water-soluble gold nanoparticle supraspheres. Nature Nanotech 12, 170–176 (2017). https://doi.org/10.1038/nnano.2016.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing